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A. TECHNICAL SECTION

~

T~

. ~ 1. Abstract

Co- J The overall objective of this proposal is to develop improved
estimation techniques for use in reliability studies when there are
competing failure modes or competing causes of failure associated with a
single failure mode in data from series systems. Such improved
nonparametric estimators of the component failure distribution will be
accomplished by incorporating some dependence structure between the
potential component failure times. The first specific aim is to
investigate techniques which identify departures from independence, based
on data collected from series systems, by making some restrictive
assumption about the structure of the system, and obtain modified
nonparametric estimators which incorporate some restrictive assumptions
about the structure of the system. Thé second aim will be to develop
improved nonparametric estimators of component lifetimes by obtaining
modifications of the product limit estimator which incorporate some
parametric information and by studying the robustness of these estimators
to misspecification of the parametric model. Competing risk analyses have
been performed in the past and will continue to be performed in the
future. This study will provide the user of such techniques with an

alternative to the usual approach of assuming independent risks. an
v

assumption which most of the methods currently in use assume. ~C




2. Objectives

b ‘ The overall objective of this proposal is to continue our

f investigation into improved estimation techniques for use in reliability
studies when there are competing failure modes or competing causes of
hl ¢ failure associated with a single failure mode in data from series
systems. We shall term such experiments as competing risks experiments.

Our primary goal is to obtain improved nonparametric estimators of the

component failure distributions incorporating some dependence structure
between the potential component failure times. The specific objectives
are to continue our investigation into:
(1) the problems associated with dependent systems by
(a) investigating techniques which identify departures from
independence, based on data collected from series systems, by
"' making some restrictive assumption about the structure of the
system, and
(b) obtaining modified nonparametric estimators which incorporate
some restrictive assumptions about the structure of the systems,
(2) improved nonparametric estimators of component reliability based on
data from a series system with independent component lifetimeé by
(a) obtaining modifications of the product limit estimator which
incorporate some parametric information, and
(b) studying the robustness of these estimators to misspecification

of the parametric model.
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‘3. Introduction to Problem and Significance of Study

l. Alvin Weinberg (1978) in an editorial comment in the published
proceedings of a workshop on Environmental Biological Hazards and

Competing risks noted that "the question of competing risks will not

qulietly go away: corrections for competing risks should be applied
routinely to data.” The problem of competing risks commonly arises in a
wide range of experimental situations. Although we shall confine our
attention in the following discussion to those situations involving series
systems in which competing failure modes or competing causes of failure
associated with a single mode are present, it is certainly true that we
might just as easily speak of clinical trials, animal experiments, or
other medical and biological studies where competing events interrupt our
study of the main event of interest (cf. Lagakos (1979)).

Consider electronic or mechanical systems, such as satellite
transmission equipment, computers, aircraft, missiles and other weaponry
consisting of several components in series. Usually each component will
have a random life length and the life of the entire system will end with
the failure of the shortest lived component.

Competing risks arise in such reliability studies when

1) the study is terminated due to a lack of funds or the

pre-determined period of obsérvation has expired (Type 1

censoring).

2) the study is terminated due to a pre-determined number of

failures of the particular failure mode of interest being
observed (Type 11 censoring).

3) some systems fail because components other than the one of

R ..

interest malfunction.




4) the component of interest fails from some cause other than the
one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the first two
situations, the time to occurrence of the event of interest should be
independent of the censoring mechanism. In such instances, the
methodology for estimating relevant reliability probabilities has received
considerable attention (cf. David and Moeschberger (1978), Kalbfeish and
Prentice (1980), Elandt-Johnson and Johnson (1980), Mann, Schafer,
Singpurwalla (1974) and Barlow and Proschan (1975) for references and
discussion). In the third situation, the time to failure of the component
of interest may or may not be independent of the failure times of other
components in the system. For example, there may be common environmental
Factors such as extreme temperature which may affect the lifetime of
several components. Thus the question of dependent competing risks is
raised. A similar observation may be made with respect to the fourth
situation, viz., failure times associated with different failure modes of
a single component may be dependent.

In our earlier work we have demonstrated that one can be
appreciably misled if one assumes independent component lifetimes when
they are really dependent. One purpose of this renewal is to explore
improved estimation techniques which incorporate some dependence structure
between the potential component failure times. Another aim is to
investigate techniques which identify departures from independence. A
third aim is to obtain modifications of the product lim. estimalor in the
presence of independent censoring which incorporate some parametric
information and to study the robustness of these estimators to

misspecification of the parametric information.




In summary, competing risk analyses have been performed in the
past and will continue to be performed in the future. This study will
provide the user of such techniques with an alternative to the usual
approach of assuming independent risks, an assumption which most of the

methods currently in use assume.




4. Rernrrt of the Work During 9-1-82 to 12-31-87

We shall briefly review the work performed during September 1,
1982 to December 31, 1987 under Air Force Office of Scientific Research
grant number 82-0307 by providing a summary of the scientific manuscripts
arising from this work, and stating the publication status of such papers.
First we believe that substantial progress has been made in
assessing the error in modeling system life in a series system assumed to
have independent component lifetimes when, in fact, the component
lifetimes are dependent. The results of our study of the effect of
erroneously assuming independence is summarized in four papers. We have
investigated in detail the effects of this assumption for several
multivariate exponential distributions. Results for multivariate Weibull
and gamma distributions will be similar since these can be obtained from
the exponential by simple marginal transformations.
The first paper deals with the model proposed by Gumbel (1960).
Moeschberger, M.L. and Klein, J.P. (1984). Consequences of
departures from independence in exponential series systems.

Technometrics, 26: 277-284. (Appendix A). This paper considers

the model

P(X > x, Y >y) = exp (-11 X —Rz y) [1 +a(1-exp(—11))(1—exp(—12y))]-
The effects of erroneously assuming independence on modeling
system reliability and system mean life are examined as well as
the effects of erroneously assuming independence on the

Maun-Grubbs (1974) confidence bounds on system reliability.
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A second paper investigates the effects of erroneously assuming
independence in both parametric estimation of component parameters and in
the Kaplan-Meier (1958) product limit estimator of the component
reliability.

Klein, J.P. and Moeschberger, M.L. (1984). Asymptotic bias of
the product limit estimator under dependent competing risks.

Indian Journal of Productivity, Reliability, and Quality Control,

9, 1-7. (Appendix B) 1In this paper it is shown that for a
general dependence structure the product limit estimator is not
consistent but converges to another marginal distribution which
can be expressed in terms of the system reliability and the crude
system reliability. When the risks are dependent and fall in the
constant sum class of Williams and Lagakos (1977) then the
estimator is consistent.
A third paper investigates the effect of the independence assumption
in both series and parallel systems for the Marshall-Olkin (1967}
distribution.
Klein, J.P. and Moeschberger, M.L. (1986). The independence
assumption for a series or parallel system when component

lifetimes are exponential. IEEE Transactions on Reliability,

Vol. R-35, No. 3, 339-335. (Appendix C) This paper shows that

for the Marshall-0Olkin (1967) model the error in predicting mean
system life can be as large as 100% of the mean system life under .ﬁ
independence and the error in modeling system reliability, which N
depends upon the mission time, can be as large as 200% for large

mission times.

.
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A fourth paper compares the effects of the independence assumption
for the three wmodels of Gumbel (1960), the model of Downton (1970), and
the model of Oakes (1982).

Klein, J.P. and Moeschberger, M.L. (1987). Independent or
dependent competing risks? Does it make a difference?

Communications in Statistics Issue B-16, No. 2, 507-533.

(Appendix D) This paper considers errors in modeling system mean
life and system reliability for the above models. It also
examines the models with maximal and minimal correlations
(Frechet (1951)) and obtains bounds on the possible error one can
incur in modeling system mean life or system reliability.

These papers show that even for relatively small correlation there is
an appréciable estimation error one incurs in estimating the parameters of
the components.

Another line of research on the grant was to derive bounds on
component reliability when the failure models are dependent and fall in a

particular dependence class. The details for our approach are found in

the following paper

Klein, J.P. and Moeschberger, M.L. (1988). Bounds on net
survival probabilities for dependent competing risks. (To appear
in Biometrics) (Appendix E). This paper obtains bounds on the
component reliability, based on data from a series system, for
the Oakes (1982) model. Since this model has the same dependence
structure as a random effects model with w have a gamma
distribution, these bounds are good for a general class of
distributions. The bounds, which are determined by specification

of a range of coefficients of concordance, are found by solving a

|®




differential equation in the observable system reliability and
ll crude life on one hand and the unobservable component survival
function on the other hand.
A consequence of the previous research was the development of a tes£
- for independence when the component reliabilities are known. Details of
this work are found in the following paper
Klein, J.P. (19868). A test for independence based on data from a

series system, Reliability and Quality Control, A.P. Basu, ed.,

235-244. North-Holland. (Appendix F). This paper provides a

modification of Kendall's test, based on the coefficient of
(" concordance, for data from a series system. The test uses the
component survival probabilities to partially estimate the
probability of concordance or discordance. A Monte Carlo study
ll shows that this test has reasonable power for several underlying
models of dependence.
An additional line of research has consisted of examining the problem
) of improving the product-limit estimator of Kaplan and Meier (1958) when
there is extreme independent right censoring. The results are summarized
in
Moeschberger, M.L. and Klein, J.P. (1985). A comparison of
several methods of estimating the survival function when there is
extreme right censoring. Biometrics, 41, 253-260 (Appendix ).
This paper looks at several techniques for completing the

product-limit estimator by estimating the tail probability of the

survival curve beyond the largest observed death time. Two
methods are found to work well for a variety of underlying

distributions. The first method replaces those censored

i)




observations larger than the biggest death time by the expected
order statistics, conditional on the largest death, computed from
a Weibull distribution. The Weibull is chosen since it is known
to be a reasonable model for survival in many situations.
Parameters of the model are estimated in several ways, but the
method of maximum likelihood seems to provide the best results.
The second method replaces the constant value of the
product-limit estimator beyond the last death time by the tail of
a Weibull survival function. Again parameters are estimated by a
variety of methods with the maximum likelihood estimators
performing the best.

A second paper which has been developed along similar lines as the

one preceding follows.

Klein, J.P., Lee, Shin Chang, and Moeschberger, M.L. (1987). A
partially parametric estimator of survival in the presence of
randomly censored data. (Currently being revised for
publication) (Appendix H). This paper suggest an improvement of
the Kaplan-Meier product-limit estimator when the censoring
mechanism is random. The proposed estimator treats the
uncensored observations nonparametrically and uses a parametric
model only for the censored observations. Oné version of this
proposed estimator always has a small bias and mean-squared error
than the product-limit estimator. An example estimating the
survival function of patients enrolled in The Ohio State
University Bone Marrow Transplant Program is presented.

Another line of research has been developed which discusses some

general properties of a random environmental stress model. Suppose that

10




under ideal conditions such as one might find in the laboratory testing
stage of development, the component hazard rates are hl(t),...,hp(t)
and that the component lifetimes of the p components in the series system
are independent. When the system is put into use under field conditions,
there is a common environmental factor which simultaneously changes each
component's hazard rate to whl(t), whz(t),....whp(t). We have
investigated this model when component lifetimes under independence are
exponential and w has a variety of distributions including the uniform and
gamma distribution (Sukhoon Lee's Ph.D. thesis under Dr. Klein). Also we
have studied this model when the components, under ideal conditions, are
of a Weibull form and w has a gamma distribution. Estimation of
parameters under the gamma stress model is considered, and a new estimator
based on scaled total time on test transform is presented. These results
were reported in a series of papers.

Klein, John P. and Lee, S. (1985). "On dependent competing

risks." Contributed Papers, 45th Session of the International

Statistical Institute, Book 1, 263-264. This paper surveyed the

random environmental stress model for series and parallel systems
focusing on the robustness of independence assumption in modeling
series and parallel systems.

Lee, Sukhoon and Klein, John P. (1987). "Bivariate models with a

random environmental factor." IAPQR Transactions (To appear)

(Appendix I). Studies the probabilistic properties of the random
environmental stress model. General results characterizing the
dependence structure are obtained and several specific examples

are considered.

11
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Lee, Sukhoon, and Klein, John P. (1987) "Statistical methods
for combining laboratory and field data based on a random
environmental stress model.” (Submitted for publication)
{(Appendix J). In this paper we assume the environmental stress
model with exponential distributions for the components under
ideal conditions and w having a gamma distribution. The type of
data available consists of component data collected under ideal
conditions and system failure data collected under operating
conditions. Maximum likelihood and method of moments estimation
of model parameters is considered as well as a least squares
estimator based on the total time on test transform. The problem

of experimental design is also considered in detail.

A final paper in this series is

Klein, J.P. and Lee, Sukhoon. (1986). A random environmental
stress model for competing risks. (Submitted for publication)
(Appendix K). This paper, which was presented at the 1986
Missouri Conference on Reliability and Quality Control surveys

the results reported in the above aspects.

Another paper which was co-sponsored by this grant is

Klein, J.P. and Basu, A.P. (1985). Estimat%ng reliability for
bivariate exponential dlstributions, Sankhya B:47, 346-353.
(Appendix L). This paper considers the problem of estimating
reliability for the bivariate distributions of Block and Basu
(1974) and Marshall and Olkin (1967). For the Block-Basu model,
a minimum variance unhiased estimator of the joint survival
function is obtained in the case of identically distributed

marginals. For the non-identically distributed case, the

12
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Finally,

performance of the maximum likelihood estimator and the
jackknifed maximum likelihood estimator is studied. For the
Marshall-Olkin model, the performance of several different
parameter estimators and bias reduction techniques for estimation
of joint reliability are considered.

the most recent manuscript prepared under this grant was

Klein, J.P. and Moeschberger, M.L. (1988). The robustness of
several estimators of the survivorship function with randomly
censored data. (Submitted for publication). (Appendix M). This
paper studies the efficiency of the Kaplan-Meier and the fully
parametric approach in estimating the survivorship function when
a particular model such as the exponential, Weibull, normal, log
normal, exponential power, Pareto, Gompertz, gamma, or bhathtub
shaped hazard distributions is assumed under a variety of
censoring schemes and underlying failure models. We conclude
that in most cases the parametric estimators outperform the
distribution free estimator. The results are particularly
striking if the Weibull form of these estimators are used

routinely.

All the results found in the preceding papers have been presented to

regional, national, and international statistics, reliability, and quality

control meetings.

13




T

References

Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability
and Life Testing - Probability Models. Holt, Rinehart and Winston,
Inc., New York.

Block, H.W. and Basu, A.P. (1974). A continuous bivariate exponential
extension. J. Amer. Statist. Assoc. 69, 1031-37.

David, H.A. and Moeschberger, M.L. (1978). Theory of Competing Risks.
Griffin, London.

Downton, F. (1970). Bivariate exponential distributions in reliability
theory. J. Roy. Statist. Soc. B. 32: 408-417.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data
Analysis. Wiley, New York.

Frechet, M. (1951). Sur les Tableaux de Correlatoin Dont les Marges Sont
Donnees. Annales de l'Universite de Lyvon. Section A, Series 3, 14,
53-717.

Gumbel, E.J. (1960). Bivariate exponential distributions. J. Amer.
Statist. Assoc. 55: 698-707.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of
Failure Time Data. Wiley, New York.

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from.
incomplete observations. J. Amer. Statist. Assoc. 53, 457-481.

Lagakos, S.W. (1979). General right censoring and its impact on the
analysis of survival data. Biometrics 35: 139-156.

Mann, N.R. and Grubbs, F.E. (1974). Approximately optimum confidence
bounds for system reliability based on component test data.
Technometrics 16: 335-347.

Marshall, A.W. and Olkin, I. (1967). A multivariate exponential
distribution. J. Amer. Statist, Assoc. 66, 30-40.

Oakes, D. (1982). A model for association in bivariale survival data. J.
Roy. Statist. Soc. 44, 414-422.

Weinberg, Alvin (1978). Editorial. Environmental Internalional 1:285-287.

Williams, J.S. and Lagakos, S.W. (1977). Models for censored survival
analysis: Constant-sum and variable-sum models. Biometrika 64:
215-224.

14




APPENDIX A




UNCLASSIFIED
FICATION OF THIS Pa

REPORT DOCUMENTATION PAGE

st ——————
To. REPORT SECURITY CLASSIFICATION 10, RESTRICTIVE MARKINGS
UNCLASSIFIED
T —————————————
s, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
. A - .
q ST - Approved for onblic ~elease;
76, DECLASSIFICATION / DOWNGRADING SCHEDULE
ﬁi s distritutionunlimited,
s, PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
62. NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
- . (If applicable)
S The Ohio State University AFOSR/NM
6c. ADDRESS (City, State, and ZIP Code) To. ADDRESS M State, and ZIP Code)
1314 Kinnear Road Bldg 410
b Ohio 21 i
Columbus, Ohio 43212 Bolling AFBDC 20332-8448
82. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION f applicabié) AFOSR-82-0307
AFOSR NM
"ﬁ%ﬁf , State, and 2IP Code) . L 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK R
Bldg 410 ELEMENT NO. | NO. NO. x\é%e:sn%wtno.

11 TITLE (nclude Security Classification) Consequences of Departures From Independence in Exponential
Series Systems

12. PERSONAL AUTHOR(S)
M.L. Moeschberger and John P. Klein

32 Tvee of reporT 13b. TIME COVERED 14. DATE OF REPQRT (Year, Month, Oay) [15. P
Final froMI—-1-82  rd2-31-87] May 31, Qg (rear o) [15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
{ FIELD GROUP |  SUB-GROUP competing risks; component life; modeling series systems;

XXZ!ZKKZ&ZXZZFE_( robustness studies; system reliability; Gumbel bivariate
i exponential

119. ABSTRACT (Continue on reverse if necessary and identify by block number)
This article investigates the consequences of departures from independence when the compo-
nent lifetimes in a series system are exponentially distributed. Such departures are

| studied when the joint distribution is assumed to follow a Gumbel bivariate exponential
model. Two distinct situations are considered. First, in theoretical modeling of series
systems, when the distribution of the component lifetimes is assumed, one wishes to compute

l system reliability and mean system life. Second, errors in ‘parametric and nonparametric
estimation of component reliability and component mean life are studied based on life-test
data collected on series systems when the assumption of independence is made erromeously.

'| Systems with two components are studied.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
1 Cuncuassipeomunumteo G same as ReT ] DTIC USERS UNCLASSIFIED
] 225 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHON
. € (Include Area Code) [ 22¢. QEFICE SYM
Maj. Brian Woodruff (202) 767-5027 * )| 22 ﬁﬁ sot
DD FORM 147 [
3, 84mMAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF “HIS PAGE

All other editions are obsolete.

| | i




TECHNOMETRICS €. VOL 26. NO. 3. AUGUST 1984

Consequences of Departures From
Independence in Exponential Series Systems

M. L. Moeschberger

Department of Preventive Medicine
The Ohio State University

Columbus, OH 43210

John P. Klein

Depantment of Statistics
The Ohio State University
Columbus, OH 43210

This article investigates the coasequences of departures from independenas when the compo-
nent fifetimes in & serics system are exponentially distributed. Such departures are studicd
when the joint distribution is assumed to (ollow a2 Gumbel ivariate exponential model. Two

disuact u arc considered. First, in theorctical modeling of serics systems, when the
disicibution of the comp lifets is d. one wishes to pute system reliability
and mean system life. Second, errors in parametric and parametnic ion of comp

nent reliability and ponecnt mean life are studiod based on life-test data oollected on sencs
systems when the assumption of independence is made erroneously. Systems with two com-
ponents are studied.

KEY WORDS: Competing risks; Component life; Modeling scrics systems; Robustiness
studics; System reliability; Gumbel bivariatc exponential.

1. INTRQOUCTION

Consider a system consisting of several components
linked in scries. For such a system the failure of any
onc of the components causes the system to fail.
Common assumptions made in modeling and ana-
lyzing data from such a system are that the compo-
nent lifetimes arc independent and exponentially dis-
tributed. Many authors have coasidered the problem
of analyzing a series system with exponential compo-
ncnt lives. For exampile, confidence bounds for system
reliability assuming independent exponentially dis-
tributed component lifetimes were presented in Mann
(1974) and Mann and Grubbs (1974). (See Mann,
Schaler, and Singpurwalla 1974 (or a more compre-
hensive revicw.) More recently, work invoking the
assumption of independent exponentially distributed
lifetimes has been presented by Chao (1981) and Mi-
yamura (1982). Estimation of component parameters
from series system data has been treated by Board-
man and Kendeil (1970) in the context of independent
exponential component lives. Some authors suggest a
nonparametnc alternative to the estimation of com-
ponent reliability based on series system data (com-
pare Kalbfleisch and Prentice 1980 and Lawless 1982).

The assumption of independence is essential to
these analyses and an important concern. Several au-
thors have shown that this assumption, by itself, is not
testable because based on data from a series system,
there is no way to distinguish between an independent
and a dependent model. (Sce Tsiatis 1975, Peterson

277

1976, and Basu 1981 for a discussion of nonidentifia-
bility results.) In many situations onc may be appre-
ciably misled by the independence assumption.

Lagakos (1979), in a study of the effects of vanous
types of dependence among componcat lifetimes,
notes that most methods of analysis have assumed
noninformative models of which independence is a
special case. He points out, “it is important to be
aware of the possible consequences of making this
assumption when it is false™ (p. 152). Furthermore,
Easterling (1980) states in his review of Birnbaum’s
{1979) monograph on competing risks, “there secems to
be a need for some robustness studies. How far might
onc be off, quantitatively, if his analysis is based on
incorrect assumptions 7" (p. 131).

In this article we consider the consequences of de-
partuces from independence when the component life-
times are exponentially distributed. Such departures
may be related to some common environmental (actor
that is present only when the components are linked
together in series. The load each component is subject
to is either reduced or increased according to the age
of the system. To study such departures, we have
selected a model proposed by Gumbel (1960).
Gumbel's model retains the assumption of exponen-
tially distributed component lifetimes while allowing
the flexibility of both positive or negative mild corre-
lation between component lifetimes.

The effects of a departure from the assumption of
independent componcent lifetimes in a2 series systcm




will be addressed for two distinct situations. The first
sityation ariscs 1in modcling the performance of a the-
oretical serics system constructed from two compo-
nents whose lifetimes ace exponentially distributed.
Here, based on testing cach component separatcly or
on engincering design principles, it is reasonable to
assume that the components are exponentially distrib-
uted with known parameter values. Based on this
information, we wish to calculate parameters such as
the mean life or reliability of a series system construct-
ed (rom these components. In Section 2 we describe
how the values of these quantities are affected by
departurcs from independence when the component
parameters are completely specified. In Section 3 we
study the performance of the Mann-Grubbs (1974)
confidence bounds on system reliability for small
sample sizes and (or varying degrees of correlation,
when the component parameters are estimated [rom

componcent data.
A ]

The sccond situation involves making inferences
about component lifetime distributions, reliabilities,
and mean lives from data collected on series systems.
Commonly, data collected on such systems are ana-
lyzed by assuming a constant-sum model, of which
independence is a special case (compare Williams and
Lagakos i977 and Lagakos and Williams 1978). In
Section 4 we study the properties of the maximum
likelihood estimators of component parameters caicu-
lated under an assumption of independent ex-
ponential component lifetimes when the component
lifettmes are Gumbel bivariate exponential. Because of
the widespread use of nonparametric estimates of
componcnt reliability, we aiso present in Section 5 the
estimaton error of the Kaplan-Meier (1958) estimator
when the assumption of independence is made er-

roncously.

2. MODELING SYSTEM RELIABILITY FROM
COMPLETE COMPONENT INFORMATION

Consider a two-component series system  with

component life lengths X ,, X,. Suppose that X; has
an exponential survivai {unction

F )= PX,>1) =exp (=41

A t>0, i=1, 2

T

This assumption 15 made on the basis of extensive
testing of each component separately or on knowi-
edge of the underlying mechanism of failure. The
value of «, 1s assumed known. If X, X, are indepen-
dent, then the ume to system failure has an cx-
ponental distribution with failure rate 4 = 4, + 4,,
and the system rcliability ts given by

F,1) = P{min (X,. X,) > t]|independence]
= exp (- at). (2.1)
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Suppose that the actual jount distribution of (X,
X ;) has the form proposed by Gumbel (1960), namcly.

PIX > x Xy > x)=(expl-a,x, - 43 xp)]
[ +a(l —exp (—a,x,)! —exp(-4,x,0] (2.2)
The joint probability density of (X . X,) is
Slxy. xg) = 4 dfexp (=4, x, —~ 43 x,))
x [l +al2exp(-ix,) = 1)
x{2expl—4ayx,)~ 1)), (2.9

where in both (22) and (23), x,. x;. 4., 4, >0,
= ! S a < I. This distribution has marginal survival
functions equivalent to those for the independent
model, which, in part, is the reason for choosing it.
The correlation between X, X,is p = 3/4. and a = 0
is equivalent to X, X, being independent. For p > 0
(<0) the components arc positively (negatively)
quadrant-dependent (sce Barlow and Proschan 197 S).
Furthermore, the conditional expectation of X |, given
Xl = Xx.l.s

|
EX,iX, :.t,)-r[l +2p —4pexp(~i,;x,))
L]

If(X,. X,) have the joint distribution (2.3), then the
true system reliability is

Folt) = P{min (X,. X,) > t|dependence)
=exp (=41 + 4p(1 — exp (—/,0)
x (1 —exp (=4, 0] (2.4)

From (2.1) and (2.4) we see that the error in mod-
cling system reliability is

a@) = Folty - £ (1)
= 4p[1 —exp (~4,0)][1 ~ exp (= 4,1)]
x exp {~(i, + i,)}). (2.5)

Note that | Al1)| increases as | p | increases, for fixed 4,.
43.and 1. The magnitude of Alr). of course. depends on
Ay sy t.and p. When 4, = 2, = ¢, onc can show that
A{t) is maximized at ¢t = (In 2)/¢ (fixing p and ¢). The
value of | A1) 1 at this point is | p |/4. which is at most
1/16. Representative values of Fuit)for i, =1, /., =

1.5, and p = - .25, —.125,0. .125, and .25 ace plotied
in Figure 1. The curve with g = 0 corresponds to the
system rehiability if the assumption of independence s
true. Since most applications of interest involve relis-
bilities of 7S or greater, in Figure 2 we plot the ratio
of the 100 pth upper percentiles under dependence and
independence versus the correlation. From Figure 2 it
appears that when the predicted system rchiability
under independence is greater than 90, misspecilying
the dependence parameter has littic etfect. In the runge
where the predicted system reliability under indepen-
dence is less than .75, however, misspeaifying the de-

-
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Figure 1. System Relisbility for Gumbel's
Model A, = 1,2, =15.

pendence parameter may lead to errors exceeding 6%.
Maximum values of | A(f)| are presented in Table 1 for
A, = 1 and various values of 4,.

The mean time to system failure based on (2.1),
assuming independence, is

#e= A4, + 25) (2.6)
and that based on (2.4) is

1
Mo =, + 2y

{ 3 1 1 ]
+4 - - }
Ad, +4;) QA +4,) 4, +24)
2.7
The amount of error in modeling system mean life is
6pd,4,
(A + 2,024, + 4,04, + 24,)

- 604, 4, u,
(24, + 4,04, + 24y)°

Hp — M ™=

(2.8)

whose absolute value obviously increases as [p] in-
creases. I{ 4, = 4, this error reduces to 2p4,/3, which
has a maximum absolute value of u, /6.

It is apparent from Table { and Equations (2.5) and
(2.8) that the error in modcling system reliability and
mean system life, based on independence, increases as

- -.'!’_’_.—-—0————
-~
-
P
w
-
°]
~
-
ol w
© PIRCLet 0. vons
o M (214, NN
o R Cet-0. c0e
« PUSCERT 0. ot
o
-
o T T T L R
0.2% -0 1S “0.0% 0.0% 0.1% 0.2%

CORRELAIION
Figure 2. Rartio of 100 pth Percentile Under Dea-
pendence and Independence Versus Correlation for
A =1,2;,=15,

1p| increases and is a function of the relative sizes of 4,
and 4,. [n particular, when the meaa life of one com-
ponent is substantially greater than the mean life of
the second component, then the behavior of the
system is well approximaied by the behavior of the
shorter-lived component acting alone. This can be
seen in (2.4) and (2.7) by letting 4, — 0. In this instance
we also see, from (2.5) and (2.8). that the amount of
error incurred by assuming independence is negligible.

3. ESTIMATING SYSTEM REL'ABILITY
FROM COMPONENT DATA

A common practice in predicting system reliability

is to test each of the components independently and
then to use the data to obtain confidence bounds on

Table 1. Maximum Values of |A(t) |for &, =1
and Various Values of 4,

4, Mex |A() |
2 056
4 041
8 025

16 014
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system rehabiity. | hese bounds, obtained by Mann
and Grubbs (1974), assume that the component life-
times are exponential and that the components act
independently when linked in series. In the bivanate
case the bounds are computed as [ullows: For the jth
component, suppose that n; prototypes have been
tested until 7, (S a)) failures occur. Let Z, be the total
time on test for the jth component. Define

- ]
“’.-Z('I_ |)/ZI+ZL’J_|)/ZL (]l)

Z (r, - I)/Z}‘

and

- 1yZ*
Ve=3(r,— WZ} + r, - V2 (3.2)

Yo, -wz;

An approximate ;-level lower conlidence bound for
system reliability at time 11

exp [ =t M*{1 — VHIM®}) + gV )3 N3M*)} ).
3.3)

where n, is the 1007 percentile of a standard normal
random vanable.

When the system being evaluated has dependent
components, these bounds may be misleading. The
problem is that component data are independent,
since the components are tested scparately, but when
they are put together into a system, some interdepen-
dence may develop. Of course, such dependence is not
detectable in the absence of some system data, since
the data on components we sce are independent. To
study the performance of the bound (3.3) when the
correct system model 1s the Gumbel model (2.2). a
simulation study was performed. For each simulated
sampic, n, observations from exponential populations
with mean 1/7,, j = 1. 2. were simulated. The (wo
samples were generated independently. The confi-
dence bound (3.3) was obtained. This was then com.
pared 1o the true system rchiability at various p's
obtained from (2.4). Ten thousand such bounds were
simulated for each set of parameter values. The esti-
mated coverage probabilities for the Mann-Grubbs
bounds (1.c.. the proportion of times that the Mann-
Grubbs ntervals assuming independence actually
contumned the true svstem rchability) lor ny = n, = 3,
5010, 2, =10, 7y =1, 5 at(, = .1 are reporicd in
Table 2 Here the true system rehability under depen-
dence ranges from 7684 w p = - 25 10 7891 at
p = 25. withavalucol 7788 atp = 0O

The results in Table 2 show that at high ncgative
corrclations, the coverage probabiities are signifi.
cantly lower than claimed under independence. and
for a high positive corrclation, the intervals are con-
servative. This trend becomes more exaggerated as ny,
n, increase because the bound approaches the reliabil-
ity under independence. As scen 1n Section 2, the true
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Table 2. Esumated Coverage Probabiiities
for Mann - Grubbs Bounds
(=+,=10.4,=15)
Correistion

25 15 05 Q 05 s 25

3 95 9341° 9411° 9474 9505 9527 9580° 9622
3 90 8740° 8842° 8932° 8978 9020 9118 9215°
3 7% 2103° 72953 7413 488 7658 1734 78OV
S
S

95 9319° 9404° 9490 9526 9562° 9617 964"
90 8712° 8848" 8985 9039 9110 9213 91114
S 7% 6968 7202 7410° 7513 7614 1812 800

10 10 95 920)° 9342° 9458 9508 955t 96 42° 9714
10 10 90 6593° 8770° 8934° 9021 9105 9256 9393
10 10 15 6777 J090° 7412° 1563 1705 7987 8256
° At ledst two $12ndard 0103 200VE 3peCilved level

® Al l0081 tw0 $18nd g er0rs DelOw s00Cied level

NOTE Standard ewors of the sb0ve estvmales e 200/ Osmately 2 tor (he
95 level. Jtor the F0ievel ang 410r the 75 level

VOW wew

teliability at ¢ is an increasing function of p so that
asymptotically coverage probabilities approach 0 (or
1) for p < 0(>0). For sample sizes in the range of 3 to
10, the estimated coverage probabilities for p < 0 are
statistically significantly lower than expected. On the
practical side, however, they are not of sufficient mag-
nitude to causc great concern, especialtly at y = 95,

4. PARAMETRIC ESTIMATION OF
COMPONENT PARAMETERS

In this scction we are interested in examining how
the independence assumption affects the magnitude of
the estimation error in estimating component mean
life from data collected on series systems. That is, (or
cach system tested. we observe its fallure ime and an
indicator variable that tells us which component
caused the system to fal. We are interested in how
varying degrees of dependence affect the bias and
mcan squared crror {(MSE) of the maximum likeli-
hood estimator of component mcan life obtained by
assuming rndependent component lifetimes.

We assumc that the 1wo components’ survival func-
tions are F (1) = cxp(~4,4), i = 1, 2, and a life test is
conducted by putting n systems on test. We observe n,
systemns Carling because of failure of the ith component,
t = 1, 2. Let T denote the sum of all a failure tmes.
From Mocschberger iand Daved (1971), the maximum
likelihood estimator of /-, assuming independence, 1y

zp=n 1, t=1,2,
su the estimator of component mean tife u, = 2, ' 1y
.= Lo, o 0, >0 (4.1}

Now suppose thiat we are in fact sampling from the
Gumbe! distrnibution (2.3). For this model, component
mean hfe ss the same as in the independent case. The
random vartbles (n,, I') are independent (the con-
dinonal distribution of T given o, in fece of n). and s

b




DEPARTURES FROM INDEPENDENCE IN SERIES SYSTEMS 281

binonual with parameters #n and p, = Pioun (X',
N} = X For this model.

MX, < X,

; ! A ry — 2y,
20y — + = 3 - e
R VRO VR Y DN Y VAR A

(4.2)

r

with p, = 1 — p,. From Mendenhall and Lehman
(1960). approximations to the moments of I/n,. con-
ditonal onn, > 0, are

E(t/n,1n, > 0) = n(l;_—ﬁ (4.3)

and

s {n - 2n — 1)
Ettniin > 0) = 4————r (4.4)
nia - Ia - 2)

where a = (n =~ 1)p, The expected vilue of T s given
by npp . where g, 1s given by (2.7). and

BT = o 22100 -(
(2, +/,)’ (..1,4»/,)

)] + nin — W}, (4.5)

(A. + 2/.1)'!

Thus. the bias and MSE of ;. conditional on a, > 0,
undcr this modcl are

. . {n ~ 2up
Big) = Eip, - p) = ———————— ~ u,. (4.6)
"= Tim = kp, — 1)) (
and
MSE (;i,) = E(T )E(1/n}|n, > 0)
_ 2udn = po ul. (@47
{tn = Dp, - 1]
fori=12
We note that for targe samples.
hm Bli) = =2 — 4, (4.8
b
hm MSE (i) = (hm H(ﬂ,)) (4.9)
fort = 1.2 Forz, = ., from (4.6). wc sec that
) 1+ 2n - et
B = —
(1) n -3 A
)
St A D (4.10)

n—13 Yn - Yy

A similar expression haolds for fii,). Note that (4.10)
consists of two terms. The first term, rcﬂccung sam-
pling crror. is positive for all n and dominates the bias
expression for small a. The sccond term. refiecting
modching error, 1akes on the ame sign as the corre-

Linon and dominates for large o, approasciung the

lemat of 2pp0, 3

When s = v,
idtn® - 204 3) 2uitn -
L MTHU "o I
: Sl A . el A R
MSE i nln  Skn V) Qi SHn - })

x {(19a = 2)p + A - Xn ety (411

Asin the bias expression, the MSE reflects a sumphing
crror term and a modeling error term The modcehing
error is a quadratic function of p for laed n For
a > 5. this error s increasing in p for

b (19n - 21y

> ———
” 4(n - In —- 1)

and decreasing in g for

I (i9a - 2

‘.<-~; —"ln—l)
For sample sizes between 5 and 21, the modceling
error, and hence the MSE. 1s a stnictly increasing
function for all pe [~ 4. 1). For n > 21, the muni.
mum MSE s achicved at p < 0. As n approaches 7,
the valuc at which the smallest MSE occurs tends 10 0.

For unequal componcnt mcans a similar result
holds. Figure 3 shows the bias as a function of p for
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Figure 3. Bias of i, Under Gumbel!'s Model for
iy =1.4,=15.
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c.%0

- — Y - -
-0.2% -0.1% -0.0% 0.0% 0.19% 028
CORRFI ATION
Figure 4. Rato of . /MSE (i, |p)/MSE (j,lp=0)
for Various Sample Sizes n and for 4, =11, =15.

vanous sample sizes when i, = 1.0 and 4, = L.5.
Figure 4 depicts the rato

/MSE (4, 1p)/MSE (i, p = 0)

as a function of p for various sample sizes when 4, =
l.i, =15

5. BIAS OF THE PRODUCT
LIMIT ESTIMATOR

A second approuch to the problem of esumating
component parameters 1s via the nonparametric esti-
mator proposed by Kaplan and Meier (1958). lnvesti-
gators who routinely use nonparametric techniques
may take this approach in hopes of obtaining esti-
mators that are robust with respect to the assumption
of exponenuality. The purpose of this section is to
show that such estimators are not necessarily robust
with respect to the assumption of independence when
the marginals are, in fact. exponential.

The product hmit estimator, assuming independent
risks, 1s constructed as follows. As before, suppose n
systems are put on tcst at time O and a; systems fail
owing to failure of component i. Let X\, .... X,
denote the ordered times at which these n, events
occur, and let r,(, ..., r_ be the ranks of those ordered
survival times among all a ordered lifetimes. The com-
ponent reliability for the ith component at time x may
now be estimated by the product of the individual

TECHNOMETRICS €. VOL 26, NO 3. AUGUST 1984

conditional survival probabilitics, namely, by

f'.,(x)tl if x <y,

y . UW1) n—~r
=n——-——l—' x> x

. DA
n—r,+ !

1ol
where j(i, x) is the largest value of j for which Xy <X
A special note is needed 10 cover the case in which
Xyey 15 nOt the largest observed death. To avoid this
problem, we shall definc F(x) = 0 for x greater than

the largest observed failure time.

If the component lifetimes in fact follow the
Gumbel bivanate exponential, we can sece that the
Kaplan-Meier estimator is not consistent. For i = 1,
the Kaplan-Meier estimator is not estimating F (1),
but, rather, another survival function, (), given by

A,

2 ‘[l+4p(l—-e"")(l-Ze"")]d
-cxp =4 [‘+‘M‘_¢-A|.X‘_e-lu)] ue,

t > 0. (5.1)
Note thatif 4, = &, = ¢.(5.1) is simplified to
A (0) = "1 + 4p(} — e~ *))112, (5.2)

which is increasing in p. Similarly, £,(1) is actually
estimating A ,(¢), which is defined analogously.
Measures of the error in estimating F (1) by £.(1) are

.00 ' ‘s

Q. 0v
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1
.
1
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Figure S. Bias of Kaplan-Meier Esumate. F (1),
L=1.i,=15.
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the bias and MSE of F{r) computed under the depen-
dence model. Under this model, the Kaplan-Meicr
estimator is equivalent (o the estimator one would
obtain based on n observations (rom an independent
system with component survival distributions A,
given by (5.1) or, if 4, = 4;. by (5.2). Hence from
Kaplan and Mcicr (1958), the variance of F{r) is given
by
‘ ldﬂo(“”
af(u)?*’

Thus from (5.1) and (5.2), the bias and MSE of £{¢) are
BF(N =R~ Fu), 120, (59

V(F() = Ade)? (5.3)

and
MSE (F () = (R (1) - FL)?

+ Aup J:""““" (>0, (55)

nH (u)®’

The estimator is not consistent, since B(F(t)) is inde-
pendent of n and not ‘necessarily zero. Also, MSE
(F{1)) consists of a factor that depends only on the
model error and is free of sample size and of a term
that tends to 0 as n tends to infinity.

Note that in the case of equal component lifetime
distributions, 4; = J; = ¢, the bias determined from
{5.2) and (5.4) simplifies to

BF () = e *{[1 + 1 — e~ *)1)"2 = 1}. (5.6)
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Figure 6. MSE of Kaplan—Maeier Estimate. F (1),
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Figure 7. MSE of Kaplan~Meier Estimate. F,(t).
ll = ',12 = 15,” =50.

In the gencral case, the integral in (5.1) needs to be
cvaluated numerically. The bias of the Kaplan-Meier
estimator was calculated for various values of 4, and
p- A representative plot of the bias appears in Figure
S.whered, = 1,1, = )5, and |p| =0, .125, 250. It is
apparent that the bias is largest for values of ¢ in the
ncighborhood of an interval that captures the mean
component lifetitnes. The absolute value of the bias
ranges from 0 to .1 in this example.

MSE (F (1)) was calculated for various values of 4,,
n, and p. Its magnitude is typified in Figures 6 and 7,
where 4, = |, 4, = L5, and a = 10, 50, respectively.
For 2, = 1,1, = 1.5, and n = o0, MSE (£(¢)) may be
obtained by squaring (5.4) or by squacing the ordinate
values in Figure 5. The MSE of the Kaplan-Mecier
estimator may be quite large for small sample size n
and modecrately large for “large™ p, the former being a
more crucial factor than the latter.

6. SUMMARY

The results preseated here show that for the
Gumbel model, onc may be misled by falscly as-
suming independence of component lifetimes in a
series system. In modeling system reliability based on
complete information about two marginal component
life distributions, effects of erroncously assuming inde-
pendence ol component lifetimes is most pronounced
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for system reliabilitics smaller than .75. For system
reliabilities larger than .90, this effect is too smail to be
of practical interest. The effects of a departure from
independence on the Mann-Grubbs bounds for small
sample sizes seems to be negligible for coafidence
levels greater than .90. But for cither large sample
sizes ‘or smaller confidence levels, one may be appre-
ciably misled.

For the dual problem of estimating component re-
liability based on data from a series system, it appears
that departures from independence are of a greater
consequence. Both parametric and nonparametric es-
timators of relevant component parameters are incon-
sistent. Although under independence, the bias of the
estimators of interest clouds the issues, it is clear that
for larger negative correlations these estimators tend
to underestimate the paramecter, whereas for large
positive correlations, the reverse is truc.
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A symptotic Bias of the Prodoct Limit Estimator
ander Dependent Competing Risks
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Ohio State University
AND
M. L. MOESCHBERGER
Ohio State University

ABSTRACT

A common assumption made in analyzing competing risk experi-
ments is that the risks are stochastically independent. Under that
assumption the product limit estimator is a consistent estimator of the
marginal survival function., We show that when the risks are not
independent the product limit estimator converges, with probability one,
to a survival function which may not be the same as the marginal
survival function of interest.

1. INTRODUCTION

Competing cisks arise in a wide range of life testing problems.
Typical areas of application are the study of series systems in the
engineering sciences and biological systems in the medical sciences.
An important area of application is the analysis of censored data where
some systems or individuals are lost or withdrawn from a study prior
to observing the endpoint of interest. Competing risks are often
"modeled by a vector F=(Ty .... Tp) of nonnegative random

variables representing the potential times to failure from each of the
p causes. ' We cannot observe T directly but instead we see the system

failure time Y = min (T;, i== 1, ..., p) and the failure pattern
B(T) = Isuch that Y =T; for iel and Y<T7T; i ¢, where 1e/ the

1
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set of all subsets of 1,...., p. Based on this information we wish
to estimate the marginal survival probabilities

S;(¢) = P(min (T, {8D>1), >0, 1el.

A common assumption made in analyzing competing risk experi-
ments is that the T's are independent random variables. Such an
assumption is not testable due 1o the ideatifiability dilemma (see Basu
(1981)). Under an assumption of independent risks a consistent esti-
mator of S;(t) is the Kaplan-Meier (1958) product limit estima-
tor. In Section 2 we show that, if the risks are dependent, then the
product limit estimator may be an inconsistent estimator of S; (¢).
_The quantity to which this estimator converges is obtained so that one
may investigate the estimator’s robustness to departures from indepen-
dence. In Section 3 we illustrate such robustness considerations for some
well-known bivariate exponential distributions.

2. INCONSISTENCY OF THE PRODUCT LiMiT ESTIMATOR

The Kaplan-Meier product limit estimator is constructed as
follows. Let 0 = Y) € Y(;) < ... € Y(») denote the ordered system
failure times of » systems put on test, The product-limit estimator of
Sy (1) is

$0) ==t [~ i+ 1] | (21)
where the product is over the ranks { of those ordered observations ¥y,
1€ 1< n suchthat Y < tand Yy cotresponds to a death from the

simultaneous cause (s) jeJ, TN 1 #¢. §, (¢) is undefined for ¢ > ¥ ()
if the largest failure time corresponds to causes in J where J N1 1 = 4.

If the assumption of independence is correct and the crude proba-
bility functions defined by F(t, I) = P(¥Y> ¢, E(Z‘ ) =) have no

common discontinuities then Langberg, Proschan and Quinzi [LPQ-

(1981)) have shown that the product limit estimator is consistent. They
also show that if the F(¢, I)’s have no common discontinuities then for a
very particular form of dependence structure the product limit estimator is
consistent. We note in the following theorem, that their results can be
used to study the robustness of the product limit estimator to departures
from independence and that, in general, if the risks are dependent then
the product limit estimator (2.1) is inconsistent,

2
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Theorem 1.
Let T =(Ty, ..., Tp) be a vector of non-negative random variables
with system life ¥ = min ( Ty, ..., Tp ) and failure pattern
g(g)-r,ifr='n,island Y<7j,j¢l (2.2)
=¢, otherwise,
Define F() =mP(¥Y>1t), F(t,1) =P(Y<y E(T)=1), 1E],
t>0,andlet < (F) ={1:F(t)> 0} be the support of F. For I/
define I, ={JE€I:7N1# ¢} Basedona random sample of size n
let $,e (f) be the product limit estimator (2,1). If the functions F(-, 1)
have no common discontinuities on [ 0, « ( F)) then
$..(00+ I G(f) as 2.3
o () rel 5 (¢) (2.3)

1

where
8 ()= I (F(a)|F(a)]expl—f (e (+ D/F)]}
at i

0<t<«(F). (29
where the product is over the set of discontinuities of F(-, J)and
Fe (-, ) is the continuous part of F(-,J).

Proof )

The proof follows directly by applying the results of Langberg,
Prochan and Quinzi [LPQ (1978)] and LPQ (1%81). By
Theorem 4.1 of LPQ (1978)T = p H Where H is a vector of (27 — 1)

independent components indexed lexicographically by 1 g€ I with

P (H; > 1) = Gy (1) given by (24).
(T=LPHifP(Y> ¢ E(T)=1I)=P(minH;> ¢, E(H) = 1)
J -

Let Ti = (T -« » Tpi)e i =1, ..., n be independent and identically
distributed as Z’. Replace F and F(-, J) in (2.4) by their empirical

counterparts fn U] =2‘:IX{Y;'>t}/n and F’,.(r, J) -‘z'" X{<t,

3
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A o g .
3 (:4) = J}/ n, to obtain Gy, 4 (). Here X (4) is the indicator function
of the set A.

Y
By Theorem 4.7 of LPQ [1981) G, » (1) <> Gj (1) a.s. for Jse L
A
Routine algebraic manipulation shows that Sy, » (#) = 111 Gjrw (1) 50 the
$ 4

result now follows [] &

"In general, as seen in the examples in the following section,
III Gy (1) % S; (1) %o that an investigator may be seriously misled by
L&
incorrectly assuming that the component lifetimes are independent. This
has been noticed by Fisher and Kanarek (1974) in the problem of analyzing
clinical trials with censored data. Theorem 1 allows an investigator to
quantify the effects of the independence assumption by computing the
right hand side of (2.3) for some plausible dependent n.odels.

LPQ (1981) have shown that for a special type of dependence the

estimator 3‘,, » (t) is comsistent. We state their result, without proof,
as a corollaty.
Corollary 1.
Assume that the conditions of Theorem 1 hold. Then S, 1) -
Sy (2) a. s. if and only if the following two conditions hold.
() S‘, (a)/ Sy (@) = F(a) | F(a), a discontinuity-point of ZF( , J)
where the sum is over J ¢ I,
- ], otherwise.
(i, P(min(T;, isl’) > 1| min(T;, iel) =)
= P(min (Ty, 1¢1I') > ¢ | min (T;, iel) > ¢)
where 1’ is the complement of 1 ¢ 1.
3. ExamprLes
In this section we present some representative examples of the use of
Theorem 1 in determining the effects, on estimating marginal survival, of

4
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the independence assumption for some bivariate exponential life distri-
butions. Let (T, T;) denote the time to failure from components 1 and 2,
respectively, ina series system. Let F (¢, #,) be the joint survival function
of (Ty, Ty) and S (¢) = P (T; > t), i = 1, 2 the marginal survival functions.
Let 5; () be the estimator (2.1) of S; (¢), and let (1), J = {1}, {2}, {1, 2}
be given by (2.4). Then 3 - G{i} ( G{l, 2} () a.s. by Theorem 1,
if the functlons F(t, I) have no common discontinuities. Note that if

P(T, =T,) = 0 then G{l, 2y (t) =1 for all £.  We now give som:
examples.

Example 1. (Block and Basu (1974))
Let F(t. 1) = /(O + A)] exp (= Ay 8y = Mty = Ay max (1, 15)]
= [Ma/ (A + X)) exp (= A max (1, ty)),
for 1,, t4> 0,
Ay 23>0, 243530, A = A+ Ay + Ay

Here S; (1) = (,‘Ij{-——m exp (— (M + dpg) 1) — a—l";’—g) exp (— Af),

t>0, but
by theorem 1

§;(t)->exp (—J-‘-L— t) a.s.t>0,1=1,2,
A +4) ) ’ ’

Example 2. Gumbel (1960)
Let F1,ty) = exp (=Mt =Qty—datity) t, 4,>0,
At aW>0 430
Here S; (1) = exp (— A; ), ¢ 0 but by Theorem !

Si(t) > exp (= At = Agr*/2), a.s for £30, i =1, 2.
Example 3. Gumbel (1960)
‘Let Fury, ty) = exp (= Aty — X fy) [1 + Ay = Agg (eXP (— A, 1))
+ €Xp (= A 43))] + Mg €Xp (— Ay 8y — A 1y)]

A 13> 0,2;, A >0, Ay 3.
Here S, (1) = exp (= A;¢) but by Theorem 1

’
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o - "A]t — ‘4\5'
$i(0) = exp (=4 f M+2,(l—~e ) (1 — 2e )] dt
(P P, LY L LY

where j is the compliment of #in {1, 2}.
Exampie 4. Marshall-Olkin (1957)

. Let F(t), ty) = eXp (= Ay #; — A fy ~— A,y MAX (1, 1y))
1y 3 >0,0,030 2,50
Here S; (1) = exp (— (M + Ay, #). In this case the conditions of Corollary

1 are met so S5 (1) =+ S; (1) a. 8. R
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The Independence Assumption for a Series or Parallel System
when Component Lifetimes are Exponential

John P. Klein
The Ohio State University
Columbus

M. L. Moeschberger
The Ohio State University
Columbus

Koy Werds—Exponsntial compenent life, Marshall - Olkin bivariate
exponsntial, Fround biveriste expounestial, Medeling series systems,
Modeling paraliel systems, Meaa systom Mfe.
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Purpess: Widen the stpte of the art

Special Math nesded for explanations: Probability and statistics
Special Math needed to use resuits: Statistics

Results useful to: Statisticians, rellability enginesrs, snd asalysts

Abstract—A commen sssumption mede in wedeling system ¥fe
from series and paraliel systems is that the componssut ives sre lndepen-
dent. This study investigates the magnitude of the errors ene may lncur by
erroneously sssuming the compenent iifetimes have lndependent ex-
ponestial distributions when ia fact the ifetimes follow the bivariate ex-
poveatial distribution of Marshall & Olkin (sevies or paraliel systems) or
that of Freund (parailel systems).

1. INTRODUCTION

First, we shall consider a 1-out-of-2:F system. Such a
system functions if and only if both components function.
Suppose that if the two components are tested separately,
the respective times to failure are X, and X;. A common
assumption made in life-testing is that these component
failure times follow exponential distributions [2, 3, 4, §, 7).
Furthermore the assumption that X, X; are s-independent
(the prefix s- implies ‘‘statistically’’) is often-times in-
voked. In general, such an assumption is not testable due
to the identifiability dilemma [1], ie, if we observe T =
minimum {X;, X3} and /] = x {X: € Xa}, where x (*)
denotes the indicator function, then Tsiatis (9) and others
have shown that the pair (7, 7) provides insufficient infor-
mation to determine the joint distribution of X, X;. That
is, there exists both an s-independent and s-dependent
model for (X, X3) which produces the same joint distribu-
tion for (7, 7). However, these equivalent s-independent
and s-dependent joint distributions may have quite dif-
ferent marginal distributions. Also due to this identifiabil-
ity problem there may be several s-dependent models with
different marginal structures which yield the same obser-
vable information, (7, ).

The first purpose of this study, as reported in section
3, is to investigate the effects of departures from this

s-independence assumption on modeling system life in
such a series systemn when the specific form of departure
from s-independence is that the joint distribution of (X,
X3) is the bivariate exponential distribution of Marshall
and Olkin (8). This model postulates the possibility of
simultaneous failure of the two components due to a shock
simultaneously feit by both components or because one
component (say, a rocket booster) explodes and the other
component (say, a space shuttle) is destroyed by the explo-
sion.

Secondly, we consider a 2-out-of-2:F system. Such a
system functions as long as one of the components func-
tions. We investigate in section 4 the effects of similar
departures from the s-independence assumption on model-
ing system life when the specific departures from -
s-independence follow either the Freund (6) bivariate ex-
ponential or that of Marshall & Olkin. The Freund model
introduces s-dependence between X, and X; such that the
failure of the first component changes the parameter of the
exponential life distribution of the second component
from )\, to 9; and similarly if the second component would
fail first.

2. PROBLEM STATEMENT
Notation

X, lifetime of component i

__,(t) system Sf under s-independence
F p(t) system Sf under s-dependence
M mean system life under s-independence

o mean system life under s-dependence

.1 point at which system reliability is p under
s-independence, ie, p = F; (¢,. 1)

t,, p point at which system . reliability is p under
s-dependence, ie, p = F p (¢4,. o).

BVE bivariate exponentiality

Other, standard notation is given in ‘‘Information for
Readers & Authors’’ at rear of each issue.

2.1 Model Assumptions

1. Based on testing each component separately, an in-
vestigator knows the marginal Sf (¢) of the lifetime of i
component to be exp(~ A\:i#).

2. When the components are installed in a series
(1-out-of-2:F) or parallel (2-out-of-2:F) system, the joint
Sf{x,, x} of component lifetimes may follow the
Marshall-Olkin (8) model:

0018-9529/86/0800-0330$01.00© 1986 IEEE
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F
: Pr{X: > x1, X2 > xa} = exp(=AiX1 — Aa%a — A2 and ¢, must be solved by numerical techniques.
8. Under the assumption of Freund BVE in a 2-out-
* max{x;,X2}), for Ay, A2 > 0, M2 2 0, X3, X3 > 0. of-2:F system the system reliability is:
3. When the components are installed in a Foll) = A1 exp(—0;¢) + A2 exp(—042)
2-out-of-2:F system the joint pdf(X,, X3) of component o) =
lifetimes may follow the Freund (6) model Oatda=fa) Outda=8)
fxy X2) = — (02 — 016, + 01A;) exp(-=(\1 + A3)0)
A O;exp{-o;x; - (X; + Xg - 03)X|}. if0 < X3 < X3 01 + M - 01) 0‘ + A - 01) &

MO exp{—0ux1 = O\ + A\ — 0:)%3},if0 <x2a <X1,  and mean system life is:
for A, N3, 04,02 > 0.

= \/[8 + A2 — 83)] + \/[8 +N\ -8
4. Under the assumption of s-independence in a "= (020 + A2 = 6a)] + Xa/10s O + 22 = )]
1-out-of-2:F system the system reliability at a mission time = 0 — 6,02 + 0:0)/[(A1 + M)\t + A2 — 02)
tis: *Qu+ A=) ifA + A #Grand A + N2 2 6,

Pr{min(X,, X2) > ¢ | “Indet } For the special instances when \; + A\; = 6; and/ or

= F(t) = expl— Q\ + M), A + A2 = 6,, the pdf in model assumption 3 is slightly
. simplified and the following different equations for system
mean system life = »4; = 1/Q\1 + \3) reliability and mean system life must be used.

tyy = =Inp/ + A2).
»! P O ) If\i + N3 £03,and \y + \2 = 6,

$. Under the assumption of Marshall-Olkin BVE in a
1-out-of-2:F system the system reliability at a mission time ¥ /) = ), ¢ exp(— Qv + A1) + exp( - 0¢)

tis: Qa + 22 = 8) -
Pr{min (X, X2) > ¢ | “BVE"} = F(t) = exp(-\) + A0+ 7)) Q2 ~ M6) - Aaf3} exp(— (i « A2)t)
A=A+ A+ A, L Qu+ M) O+ A = 8) '

mean system life = up = 1/), 2
#o = A2/ + N2)" + 1/[02 O + A2 — 63))

t,, 0 = —=Inp/\
6. Under the assumption of s-independence in a 2-out- + Qi t M) o;‘ = Mbs) - Mbs
of-2:F system the system reliability at a mission time ¢ is: 1 + M) O\ + Az — 82)
Pr{max (X;, X2) > t| “Independence’’} IfA; + Az = 0;, and \; + A # 0
= F A1) = exp(—Mit) + exp(— Aaf) - exp(-0\y + Ma)i),
Fo(t) = M texp(—(\y + M) + _exp(=6u)
mean system life is g, = 1/\; + 1/ =1/0\ + N\2) Oy + A2 - 8y)
) 2
= Qi+t d) - Mha {0\ + N2) s = N\a01) — Nib1} exp(— Ny « A2)0)
AdaG + M) + ' -
O+ M)A+ 02 = 6y)

and ¢, must be solved by numerical techniques.
7. Under the assumption of Marshall-Olkin BVEina  up = A/ + M) + 1/[0; Oy + A2 — 69))
2-out-of-2:F system the system reliability is:

+ A1 + A2) Ay — Nafy) — M,

Pr{max (X, X2) > t | “BVE"} = F (1)

4
F A0+ A - 0) M
= exp(—(\ + Ma)t) + exp(—(\2 + M2)f) ~exp(—\), Qi+ 7)o+ 2 = 6) ]
g IfNy + N\ =60, =0,
mean system life is:
wo = O + A _1 F n{" = {1 + Ou + )t} exp(— (v + M),
s+ Ma) 2 + A2) A ap = 2/Q\; + 2. R
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As before, ¢, must be evaluated by numerical techniques.

The problem to be addressed is: How far off may a
researcher be in modeling system reliability, mean system
life, and mission time at which system reliability is p for
series systems (Marshall-Olkin BVE) and for parallel
systems (Marshall-Otkin BVE or Freund BVE).

3. MODELING EFFECTS OF DEPARTURES FROM
s-INDEPENDENCE IN SERIES SYSTEMS

From model assumptions 4 and $, the relative error in
modeling system reliability under Marshall-Olkin BVE is

Fo@) - Fie) _ (M) — exp(= (M + Ma))
F0) exp(—(As + M)
= exp(—Aat) - 1

= exp —p M+ M) (
(-9

P = \2/)\ is the correlation between X; and X;.

This shows explicitly that the relative error ranges from 0
(when p = 0) to ~ o (when p = +1). Thus assuming
s-independence consistently overestimates system reliability
and in some instances the resuits may be very far off. When
mission time is 7, = ~1In p/ (M + \Aj) the relative error is

exp<l—-‘°—lnp) -1 =p""" _ |. From model assump-
-p
tions 4 and 5, the error in modeling mean system life is:

o = w _ VA= VO 4+ M) _
w 1/(0\ + A2) A

= —-p.

Again s-independence consistently overestimates the mean
system life.

4. MODELING EFFECTS OF DEPARTURES FROM
INDEPENDENCE IN PARALLEL SYSTEMS

4.] Under Marshall-Olkin BVE.
From model assumptions 6 and 7, the relative error is:

Folt) - F(t) = exp(—\at) - 1
Fi(t)

=ep{- L+ M} - 1
1-p

which interestingly enough is the same relative error obtained
in section 3 and the same comments apply here.

The relative ertor in modeling mean system life is:

AD = M

14

= —pk*+2°+ k> + 22+ )+ p(k° + 4k + k) - k2p°
&+ k+ 1) + ko) (k + p)

k = \;/ A2

Again s-independence consistently overestimates mean
system life; the magnitude of this error is plotted in figure 1.

'c. 00 0.17 0.13 .50 c.57 0.83 1,00
3 aprazl30 L,

- e

Fig. 1. Relative Error in Modeling Mean System Life Under
Marshail-Olkin BVE for \; = k )\,

4.2 Under Freund BVE.
From model assumptions 6 and 8 the relative errors of
mean system life and system reliability are:
ED ~ M od Fn(f)_- F/ (0 :
Br Fr(t)

though not simple expressions, they may be easily calculated.
Figure 2 shows plots of the relative error of mean system life
for some representive values of A, and 8;, viz, A\, = 1; A; =
0.5, 1.0, 2.0; 0.25 < ¢, < 4.0 (on horizontal axis); and 8, =
0.25, 0.5, 1.0, 2.0, 4.0. Figure 3 shows plots

L




L KLEIN/MOESCHBERGER: THE INDEPENDENCE ASSUMPTION FOR A SERIES OR PARALLEL SYSTEM . 133

~
o
-
w
-
°'¢
x
°
o
.2 . 0.29
3.. j<d [
«® )
(-] o
E [
s o_
o o~
w e .
> ';'07
o =
S [- 4
o8 e
‘?ﬂ [ < 3
.: . 0.3
~ ~
b ?ﬁ
;: : 02 -]
?J o4 LA
0,
» » $, =0
o o 2
. . [
C" T T T T— - ml a, \ . T . y i “‘
0.25 c.9%% 1.67 2.37 3.08 3.7 9. 50 G.S0 1.92 L3 4.7 6.17 7.58 9.00

Fig. 2A. Relative Error of Mean System Life Under Freund BVE  Fig. 2C. Relative Error of Mean System Life Under Freund BVE

for\y = ;0 = .5, forhy = 133 = 2.
s =
- °-.
2 "3
o
o c--

0,84
;
0.00

s 8
A h
«° y
=} g !
-3 «
«
4
u— u—
~N -
b5 wo
> we
- -
< Lnd
a
oS e
A "
¢°- c?J

-0.214

Jal

-0.43

o 8.6y
g9.3

T 1.2% 2.00 2,75 3.50 \.2% 5.00 ~25 0.96 1.87 2.1 3.08 3.79 9.50

" 1
Fig. 2B. Relative Error of Mean System Life Under Freund BVE  Fig. 3A. Relative Error of System Reliability Under Freund BVE
forh = ;M\ = 1. fortee = 070, N\ = 1,5\ = 8.

e et s M




33 TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 3, 1986 AUGUST

0,11

0.27

—_—k

5-0.5

e, =1.0

U 2.0

~ ¢, = 4.0

~J 2

e

~ e, = 8.0

ad

~”~

L]

:; . v T T ul
‘t.3C r.2s 2.00 2.75 2.50 825 3.06

Fig. 3B. Relative Error of System Reliability Under Freund BVE
for teg = 053, \y = 1, N\ = 1.

of the relative error of system reliability for ty =
~In (.90)/(A\: + A3) for the same values of A\, and 68,. For
the case of s-independence, \; = 0; = land \; = 0, =
0.5, 1, 2, the relative error is, of course, zero in the plots.
For situations in which failure of the first component
causes the hazard rate 0; of the second component to be in-
creased (or decreased), s-independence overestimates (or
underestimates) mean system life and system reliability.
This overestimate (or underestimate) becomes substantial
if the hazard rate 8, is dramatically increased (or de-
creased) over the hazard rate A\, of the second component
tested separately. A similar comment can be made for 8,
and \,. Positive (or negative correlation) of the component
lifetimes ‘is a consequence of the hazard rate 4, being
greater (or less) than the hazard rate A\, of component i
tested separately. The magnitude of the relative error of
mean system life and system reliability may easily be found
in the figures 2 & 3, respectively.
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INDEPENDENT OR DEPENDENT COMPETING RISKS:
DOES IT MAKE A DIFFERENCE?
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Oakes hivarniate exponential.

ABSTRACT

This article investigates the consequences of departures from
independence when the component lifetimes in a series system are
exponentially discributed. Such dapartu;eu are studied when the
joint distribution is assumed to follow either one of the three
Gumbel bivariate exponential models, the Downton bivariate
exponential model, or the Oakes bivariate exponential model. Two
distinct situations are considered. First, in theoretical
modeling of series systems, when the distribution of the
component lifetimes is assumed, one wishes to compute system
reliability and mean system life. Second, errors in parametric
and nonparametric estimation of component reliability and
component mean life are studied based on life-test data collected

on series systems when the assumption of independence is made
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erroneously. In both instances, one may be appreciably misled by
- falsely assuming independent component lifetimes. The amount of
h error incurred depends upon the correlation between lifetimes and
- the relative mean life of the two components. In the modeling
problem, the level of -eiiability and the length of mean system

3 life also affects the error. In the estimation problem sample

size may be influential in determining the magnitude of the

error.

il

INTRODUCTION

Consider a system consisting of two components linked in
series. For such a system the failure of either of the
components causes the system to fail. In a biological or medical
context the components can be different lethal diseases and/or
different reasons for removal from a study. In a clinical trials
framework the primary response of interest, death or remission,
and censoring can be considered as components of the system.

This general formulation has been detailed in the theory of
. competing risks (cf. David and Moeschberger (1978)).

A common assumption in such a formulation is that the
component lifetimes are statistically independent. Several
authors have shown that based on data from series systems only,
this assumption, by itself, is not testable because there is no
way to distinguish between independent or dependent component
lifetimes (see Basu (1981), Basu and Klein (1982), Miller (1977),
Peterson (1976), etc.). However, several authors (see Lagakos
(1979) p. 152 and Easterling (1980) p. 131) have pointed out the
need to determine, quantitatively, how far off one might be if an
analysis is based on an incorrect assumption of independence.

To study the effects of erroneously assuming independence we

shall assume that each of two component lifetimes is
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exponentially distributed when tested separately and that the
property of marginal exponentiality will be preserved even though
some dependence may be induced when the components are linked in
series. The assumption of exponentially distributed component
lifetimes has been made by Mann and Grubbs (1974) when finding
confidence bounds on system reliability, Boardman and Kendell
(1970) when estimating component lifetimes from system data, and
Miyamura (1982) when combining component and system data. (See
Barlow and Proschan (1975) or Mann, Schafer, and Singpurwalla
(1974) for a more complete review.) We shall model the
dependence structure by the three models of Gumbel (1960), a
model proposed by Dowmton (1970), and a model described by Oakes
(1982). These models are briefly described in Section 1. The
effects of a departure from the assumption of independent
component lifetimes will be addressed for two distinct
situations.

The first situation arises in modeling the performance of a
theoretical series system constructed from two components. Here,
based on testing each component separately or on engineering
design principles, it is reasonable to assume that the component
lifetimes are exponeutially distributed with known parameter
values. Based on this information, we wish to predict parameters
such as the mean life or reliability of a series system
constructed from these components. In Section 2 we describe how
these quantities are affected by departures from independence.

The second situation involves making inferences about
component lifetime distributions from data collected on series
systems. Commonly, data collected on such systems are analyzed
by assuming a constant-sum model, of which independence is a
special case (compare Willicas and Lagakos (1977) and Lagakos and
Williams (1978)). 1In Section 3.1 we study the properties of the
maximum likelihood estimators of the component mean life
calculated under an erroneous assumption of independent
exponential component lifetimes as mentioned above. Because of

the widespread use of the nonparametric estimator for component

2
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reliability proposed by Kaplan-Meier (1958) we study, in Section
3.2, the properties of this estimator when the marginal
reliabilities are exponential and independence is incorrectly

assumed.

1.  Ihe Models

L}

Consider a two component series system with component life
lengths Xy, X,. Suppose that each X; has an exponential
survival function

Fy(x) = P(X; > x) = exp(- Ay x), X 20, x 2 0. (1.1
This assumption is made on the basis of extensive testing of each
component separately or on knowledge of the underlying mechanism
of failure.

To examine the effects of a departure from independence we
consider five bivariate exponential models, each with marginals
equivalent to (1.1). The first three models are due to Gumbel
(1960); the last two models are due to Downton (1970) and Oakes
(1982).

1.1 gGugbel's Model A
For this model the joint survival function is
P(Xl > %y, X2 > x2) - exp(- Alxl - kzxz - lllexz), -
X1, X9 20, )‘1' X2>0, 0< 112 < Xy g -
(1.2)
The correlation between X, Xy is
AA

172
Po= - A, expC Ay Ap/ Agp) Eg(- g A/ app) - L,

-«
where Ei(z) - f_z exp(-u) du is the integrated logarithm.
u .

For this model p varies from - .40365 to 0 as A1, decreases

from %; X, to 0. It is never positive. The regression %

on X, is nonlinear with —
E(X31Xp = xp) = (A A+ Ay A%y - Ap)/C A+ Appxp)?
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. . 1.2 Gumbel's Model B
h . For this model the joint survival function is
P(X > x1, Xy > xp) =
exp(~ A1X; - Apxy) (1 + 4p (1-exp(- Ayxy)) (1- exp(- Axx9))),
M, 2 >0, %, %20, -14g o g 4. (1.3
The correlation, p , may be positive or negative. The regrassion
h of X on X, is again nonlinear with
t E(X)1Xy = Xp) = (L + 20 - 4p exp(- Agxp))/ Ay.
» The effects of a departure from independence on modeling system
] reliability and estimating component reliabilities has been
' studied in detail in Moeschberger and Klein (1984) for this
‘ model.
* 1.3 Gunmbel‘'s Model C
For this model the joint survival function is
P(X; > x1, Xy > xp) = exp {-(( Axp™ + ( Agxp)™ /W
A1, Az >0, ma>1, X3, Xg 2 0. (1.4)

The correlation is

/2 (cos 8 sin 6)“I
P = (4 +2m) 7%2/a de -1

(cos 8% + sin e"')

0
which varies from 0 to 1. For this model m = 1 corresponds to
independence and as o + =
,‘ P(Xy > x5, Xy > xp) *~ noinimum (exp(- Ax%y), exp(- Agxy)),
(1.5)

the Fréﬁhet (1958) upper bound for these marginals.
1.4 Downcon's Model
Downton (1970) suggests modeling bivariate exponential

i systems by a successive damage model. This model assumes that in
a two component system the times between successive shocks on
each component have independent exponential distributions and
that the number of shocks required to cause each component to
fail follows a bivariate geometric distribution. The joint
probability density function of the component lifetimes is
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A (A, x + A x.) 2VpA A, X.X
171 272 172 7172

exp | -{ ——————— o —8

1-p 1-p

f(xl.xz)-
l-p
(1.6)
where Ig( . ) is the modified Bessel function of the first kind of
order zero, and A, 1, >0, x;, %20, 0 p < 1.
The correlation between X, X, is p which spans the interval ==
(0,1). As p *1 che joint survival function of Xy, X,
spproaches the upper Frechet distribution (1.5). For this model
E(X11Xy = %) = (1-p2)/ Xy + Phoyxy/ Ay.
1.5 Oakes’ Model

Oakes (1982) has proposed a model for bivariate survival
data. This model was first proposed by Clayton (1978) to model
association in bivariate lifetables. Special cases of Oakes’
general model have been suggested by Lindley and Singpurwalla
(1985) and Hutchinson (1981).

For this model the joint survival probability is

P(X) > x1, X3 > x5) =

(exp( M 8-1)x]) + exp(A (8 -1)xp)-1) /(8 -D)
vhere Ay, A, >0, 8 >1, %y, X9 2 0. (1.7)
For 6 =1, X). Xy are independent and P(X; > xy, Xy > %) =+
bound in (1.5) as ® > » . For this model Kendall's coefficient of
concordance i{s T « (§'-1)/(8+1) which spans the range 0 to 1. The
correlation, o , also spans the range 0 to 1 and is found numerically.

This model has the following physical interpretation. Let
r(xy[Xg = xp) and r(x;|Xy > x,) be the conditional failure
rates of X; given X; = x5 and Xy > x,, respectively. Then
r(x)|Xy = xp) = 8r(x |X, > x,).

The model can also be derived from a random effects model. This
formulacion agsumes that when the components are tested separately unde
ideal conditions the component survival functions are

S4(x) = exp(-exp() ix( 8-1)) + 1), 1 =1, 2,

and that when the two components are put in a series system in

the operating environment there is a random factor W which
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simultaneously changes each component life distribution to
Sg (x). If W has a gamma distribution with density function

Lo
gvw) = w -1 v then, unconditionally, the joint survival

function (1.7) holds.
1.6 Fréchet Bounds

Fréchet (1958) obtained bounds of the joint survival
functions which can be obtained for any set of marginal
distributions. For exponential marginals these are

- klxl - X2x2
MAXIMUM (e + e -1, 0) < P(Xl > X1, Xy > x9)

=A1Xq  =A9X
< MINDOU™ (e 11, o272
For this set of marginals the lower Fréchet distribution has

correlation - .694 and the upper Fréchet distribution has
correlation 1.C. These are the minimal and maximal correlations

for exponential marginals.

2. Exxoxrs in Modeling System Life

Suppose that based on extensive testing or based on
theoretical considerations each of the two components in a series
system is known to have an exponential distribution, (1.1) with
marginal means 1/ X;, 1/ },, respectively. It is of interest
to predict the system reliability F(x) = P(X; > x,X, > %) and the

system mean life ¥ = f',n f(c) dt. If the investigator assumes
o

that the two components are independent then the system
reliability is

Fp(x) = exp(-(A 1 + ) 5)x) 2.1
and system mean life is u; = 1/(} + A 2)-

If the components are not independent, but in fact follow one
of the models in Section 1, then convenient measures of the
effects of incorrectly assuming independence are

8(x) = (F(x) - Fy(x)f(x) and 6 = (u- up)/ug.
for predicting system reliability and system mean life,
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respectively. In these, F(x) and u are computed under the
appropriate dependent model. Values of F(x) can be computed
directly for (1.2), (1.3), (1.4), (1.6) (by numerical
integration) or from (1.7). Expressions for u are given in
Appendix 1. All expressions for A(x) and § depend on the
values of i, and i, only through the ratio 2,/21, =K

and, for K < 1, the values are equivalent to those for K' = #.
For the upper Fréchet distribution

_5.)

A (xp) = p’("“l -1 vhere K 2 1

and x;, is the upper percentile of Fr(x), f.e., fi(xp) - p.
Also 6§ =1/K for K> 1. For the lower Fréchet distribution

8 (xp) =P
-1 otherwise
and § =K2 + K+ 1 - (R+1)2 Y + (K+1) 1n(Y)
K X

vhere Y is the solution of the equality XX + X = 1. Table I
gives the values of A(xp) x 1008 and 6§ x 100% for p = .9, .7,
.5, .3, .1 for the upper and lower Frechet distributions.

From Table I we see that the largest percent error occurs
when the A parameters are equal (K=l). Also for fixed K there
is relatively small error (smaller than 5.41%) in estimating
system reliability by modeling a dependent system by an
independent system when f(x) is large (say, F(x) > .9). For
small values of system reliability, one can be appreciably
misled. Errors in estimating system mean life appear to be
substantial unless one component has considerably longer marginal
life than the second one. In that instance, one can see
instinctively that the correlation would have a minimal impact.

Figures 1A, 1B and 2A, 2B are plots of & (xp) for p = .25,
.75 and for K = 1 1/X 3 =1, .67, respectively, for the five
models described in Section 1 as a function of correlation. It
appears that substantial errors may be made in modeling system

reliability with moderate amounts of dependence.

I
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TARLE |
UPPIR AND LOWER BOUNDS ON THE PERCENT ERNOR IN MOVELING SYSTEM LIFE

F(x)=0.9 F(x)=0.7 F(x})=0.5 F(x)=0.3 F(x)=0.1 MEAN LIFE

UMR UPRR LOER UPPER UPPER LR UPPER UBER (FPER LOMER  UPPRR
K BOBD BOUND BOND BOIND BOUND BOND BOIND ROND  BOND  BXND  BOIND  BOLND
1 0.29 541 -3.81 19.52 -17.16 41.42 -100.00 8&2.57 100.00 216.23 -38.63 100.00
2 0.2 357 3% 1262 -15.27 259 -100.00 49.38 -100.00 11544 -37.07 50.00
3 02 207 -28 93 -12.90 18R -51.52 35.12 -100.00 77.8 -34.8 33.33
4 019 213 2.4 1.3 -11.02 M8 411 2123 -100.00 38.49 -R.& 25.00
5 0.16 1.T7T 212 612 95 1225 -3%.3 2.2 -100.00 46.78 -31.068 20.00
6 014 1.5 -18 523 -8.45 1041 -33.91 1877 -100.00 3.9 -29.53 16.67
7 013 1.33 -1.67 4% -1.5 9.05 -3.33 16.24 -100.00 3B.35 -28.18 4.2
8 0.12 1.18 -1.51 4.0¢ -6.82 8.0 -27.2 4.3 -100.00 29.15 -26.99 12.50
9 011 1.08 -1.37 3.6 62 7.8 -B0@ 127 -100.00 258 -259 1111
10 0.10 098 -1.26 3.3 -5.71 65 -2.9 11.57 -100.00 23.28 -24.98 10.00
1 000 08 -1.17 3@ 52 59 -21.27 105 -100.00 21.15 -24.12 9.09
12 008 0.81 -1.08 278 461 548 -19.7 9.0 -100.00 193 -2.34 8.3
13 008 07 -101 2.5 4% 508 -18.4 89 10000 17.88 -2.6 1.69
u 007 07 09 2.4 4.0 473 -17.3 8.38 -100.00 16.5 -21.96 7.14
15 007 068 080 225 4.05 4.4 -16.35 7.8 -100.00 1548 -21.33  6.67
16 008 0.2 -0.85 212 -3.53 4.16 -1545 7.3 -100.00 14.30 -20.78 6.25
17 008 0% 08 20 -36 39 465 692 -100.00 13.66 -20.28 588
18 008 03 07 1.8 -345 372 1393 6.54 -100.00 1288 -19.78 55
19 008 053 073 1.80 -3.29 3.5 -13.27 6.20 -100.00 12.20 -19.% $.28
20 006 03 -0.00 1.7 -3.14 338 -1267 59 -R.2 11.%9 -18.8 5.0
2 0.05 04 -0.08 1.8 -300 3.2 -12.13 56 8.3 11.03 -18.46 4.7
2 -008 048 -06¢ 15 -288 308 -11.63 537 -84.73 105 -18.08 4.5
23 005 04 061 1.5 -27 2.8 -11.16 S5.M -84 1007 1771 4.3
% 004 042 059 144 -268 28 -1074 4% -8 9.6 -17.37  4.17
2 006 041 -0.57 1.3 25 27 -10.3 474 -T5.49 928 -17.04 4.0

Figures 3A, 3B are plots of § for all five models and for
x-x‘l/x 2 - 1, .67, respectively, as a function of the
correlation. Here it appears that substantial errors are made in

modeling mean system life for even a small amount of dependence.
3.  Errers in Estimating Component Parameters

3.1 Parametric Estimation

In this section we examine the effects of incorrecctly
assuming independent component lifetimes on the magnitude of the
estimation error in estimating the first component mean life

based on data from series systems. Suppose that n series systems
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. are put on test. For each system we observe the system failure
time and which component caused the faflure. Leat ny denote the
‘- number of systems where the system failure was caused by failure
of the i™P component, { = 1, 2, and let T be the total time on
test for all n systems. If we assume that the component
lifetimes are independent and exponentially distributed then
Moeschberger and David (1971) show that the maximum likelihood
- estimator of u ), the first component mean life is

Wl = T/ny for ny > 0. (3.1
This estimator is asymptotically unbiased and for n finite
E (ﬁ1) = E(T) E(l/nllnl > 0) due to the independence of T and .
Suppose now that the two component lifetimes are not
independent but follow one of the models described in Section 1.

If we incorrectly assume independence then a measure of the
excess bias due to incorrectly assuming independence i{s B =
(B(ﬁllbopendance) - E(;lltndapendance))/ Y. For each of the
dependent models under consideration T and n, are independent.
For large n, B converges to (u /p -u )/ 4y vhere u is the
mean system life and p is the probability the first component
fails first, computed under the dependent model. For finite n,
E (ﬁl) -nyu Ep(l/n1|n1 > 0) computed under the

appropriate nodel.wheren

) Bp/mylny > 0) = T Grka-p*x / A-a-p™.

Expressions for u and p are given in Appendix 1 and Appendix 2,
respectively. The expressions depend on X, X, omly
through the ratio K = 1 1/ X. For all models, p = 1/2 when
K=1.

For the upper Fréchet distribution p = 0 if K< 1; 1/2 if K =
1; and 1 if K > 1. Hence for K < 1 no failures from the first
component are ever observed so that the modeling error B becomes
infinite for all n. For K>1, p=1and ¥ = W, so that B =
(1 - E( " 1iIndependence)/ 1 ;) which tends to 0 as n + = 1In
this case the models with correlation ranging from 0 to 1 have B

increasing for p < py and decreasing for p > py. For the
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lower Fréchet distribution, p is the value of X which solves the
equation XX 4X-1=0. ForK<1 wve have P <1/2 and for K >
1l wve have p > 1/2. Table II gives the value of B for n = 25,
50, « for the two Fréchet distributions. It also gives the
maximum wmodeling error for the Gumbel C model which is an
indication of maximal excess modeling error.

From Table 1I we note that the dependence structure exerts a
large effect on estimating the smaller of the two component means
and that either sffect is most exaggerated for small sample
sizes. For K > 1 there is very little sample size effect on the
modeling exror. For K strictly larger than one the maximum bias
under the Gumbel C model decreases with K and the correlation at
wvhich this maximum is attained also decreases to O.

Figures 4A, 4B are plots of the relative excess bias, B, due
to incorrectly assuming independence, as n + = for K = 1.5, and
.67, respectively. Figures 5A, 5B are plots.of B for n = 10 with
K =1.5, and .67, respectively. For K = 1.5 the sample size
effect is negligible in assessing the relative excess bias. For
K = .67 the sample size has a noticeable effect on determining B.

3.2 Nonparanetric Estimation

A second approach to the problem of estimating component
parameters is via the nonparametric estimator of Kaplan and Meier
(1958). Investigators who routinely use nonparametric techniques
may take this approach in hopes of obtaining estimators that are
robust with respect to the assumption of exponentiality. However
this estimator is not necessarily robust to the assumption of
independence.

The product limit estimator, assuming independent risks is
constructed as follows. Suppose that n systems are put on test

and let ryy, ..., '1n1 be the ranks of the ordered ny

failures from cause i, Xg (1) e xi(ni)' among all n

]
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L . TALE 11
h RELATIVE MODELING IN ESTIMATING THE MEAN
. N=20 50 LDOT (N + =)
LOER GUMBEL C LOWR GUMNEEL C LOER GUMBEL C
X BOND W-1 RO BIAS  BOND 1 MO BIS BIND RD-1 RD BIAS
1/10  -167.46 *eeses § o0 eeest  _g (0 1.000 -38.64 1.000
1/9 -142.98 Swesss | ) Seesss 79 35 1.000 -57.84 1.000
1/8 -123.37 *eeses 1 o0 *essss 76 68 1.000 -56.93 1.000
t. 1/ 7 -107.25 %eesss | () *wess g (3 1.000 -55.87 1.000
1/6 93,88 *ssess | 00 seseex g5 34 1.000 -54.63 1.000
1/5  -81.91 Sewess | ) sesess g1 54 1.000 -86.13 1.000
1/4 7145 seesss | o0 sessss  _57 5 1.000 -51.24 1.000
1/3 6178 seesss ) gp wesss 53 n 1.000 -..m 1.000
1/2  -52.16 *eesss | (p eeeess 47 3] 1.000 ~48.08 1.000
1 -40.90 106.99 1.000 106.90 -39.45 102.13 1.000 102,13 -38.63 100.00 1.000 100.00
2 -2 -2.79 0510 1082 -32.84 -1.04 0.518 11.50 -R.12 0.00 0.528 11.91
3 2828 -1.82 0400 5.3 -28.29 0.6 0410 5.8 -28.% 000 044 6.15
4 -25.83 -1.35 0.8 3% -25.17 -0.52 0.382 3.7 -25.8 0.00 0.313 4.01
s -23.62 -1.08 0.312 2% -23.80 -0.41 0.3 2.1 -23.% 0.00 0.41 2.9
[ -2.05 -0.89 0.208 1.2 -2.25 -0 0.307 2.00 -2.36 0.00 0.318 2.8
7 -7 0.7 0211 1.4 -2098 -0.29 0.20 1.68 -21.11 0.00 0.33 1.83
8 -19.88 -0.67 0.2%7 1.20 -19.92 -0.26 0.277 1.40 -20.04 0.00 0.280 1.53
] -18.78 0.5 0.8 101 -19.00 -0.23 0.208 1.19 -19.13 0.00 0.279 1.31
10 -17.98 -0.53 0.237 0.87 -18.20 -0.20 0.237 1.03 -18.33 0.00 0.211  1.14

order lifetimes. The estimator of the component reliability for

the 1Ch component is
1 if x < xi(l) N
. . ji,x) LI IT
Si(x) - h X > x(i(l))
j=1 n -y o+l (3.2.1)

where j(i,x) is the largest value of j for which Xi(3) < X.
This estimator is asymptotically unbiased when the component
lifetimes are independent.

When the risks are dependent Klein and Moeschberger (1984)
show that §i(x) does not estimate the marginal component
reliability, but rather it estimates consistently another

survival function

Ay (x) = exp| - fx 4 .Q4(v) (3.2.2)

_ F(e)
where F(x) = P(minimum (xl,xz) > x) and Qi(x)

- P (min(Xl.Xz) < x, min(xl,xz) - Xi). i =1, 2.
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524 KLEIN AND MOESCHBERGER
TABLE [II
ASYMPTOTIC BIAS OF THE PRODUCT LIMIT ESTIMATOR
F(x)=0.7 f(x)=0.5 Fix)0.3
LOWER GUMBEL C LOER GMEL C LOWER GUMEEL C

K BOUND  RHDe1 R0 BIAS BOUND RHD=1 R0 BIAS BOUND RHO=1 RO BIAS
1/ -100.00 42,88 1.000 42.88 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
1/8 -100.00 42.88 1.000 42.88 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
1/7 -100.00 42.88 1.000 42.86 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33 -
1/6 -100.00 42.88 1.000 42.86 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33 —
1/5 -100.00 42.88 1.000 42.86 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
1/74 -100.00 42.88 1.000 4£2.86 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
1/3 -100.00 42.88 31.000 42.88 -100.00 100.00 1.000 100.00 -52.70 233.33 1.000 233.33
1/2 -~100.00 42.88 1.000 42.86 -100.00 100.00 1.000 100.00 -24.21 233.33 1.000 233.33
1 -100.00 19.52 1.000 19.52 -100.00 41.42 1.000 41.42 -9.65 82.57 1.000 82.57
2 ~100.00 0.00 0.528 3.87T -4.67 0.00 0.528 7.65 -4.490 0.00 0.528 13.67
3 -100.00 0.00 0.424 2.00 -14.98 0.00 0.42¢ 4.10 -2.85 0.00 0.44 1.2
4 3.8 0.00 0.3713 1.3 -10.78 0.00 0.373 2.7 -2.11 0.00 0.373 4.74
5 -1.67 0.00 0.341 1.01 -8.42 0.00 0.341 1.98 -44.%0 0.00 0.341 3.47
] -1.29 0.00 0.319 0.7 -6.91 0.00 0.319 1.54 -M4.83 0.00 0.319 2.
T -1.18 0.00 0.308 0.64 -5.88 0.00 0.303 1.26 -28.T1 0.00 0.303 2.19
8 -1.3 0.00 0.290 0.54 -5.08 0.00 0.290 1.08 -24.45 0.00 0.290 1.83
9 -0.92 0.00 0.219 0.46 -4.50 0.00 0.279 0.90 -21.31 0.00 0.219 1.57
10 -0.82 0.00 0.271 0.40 -4.08 0.00 0.211 0.78 9.2n 1.37

~18.89  0.00

Expressions for ﬁl(x) for the five models of interest are given
in Appendix 3.

A measure of the effect of dependence in using the product
limit estimator with dependent risks is 8;(p) -'(ﬁi(xp) -

p)/p where x_ is the time where the true component reliability

P
is p. 4 1(p) is again only a function of K = X ;/} ,. For

the upper Frechet distribution

p’1 -1 for K<1
8,(p) = p 2 1 for k-1
0 for K>1

for K <1 ﬁl(x) = 1 for all x since the first component never
fails, while for K > 1 all failures are due to the first
component. For -those models with correlation spanning the range
(0, 1), A,(p) is increasing for correlations less than p and
decreasing for correlations greater than p when K > 1. For the

lower Fréchet distribution
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1

ﬁi(‘p) =Yexp | - ) du [for p > (1-Y)
u + uk -1
0 otherwise,
where Y is the solution to the equation XX + X = 1. Table III
shows the value of 4,(p) x 1008 for p = .7, .5, .3 for the two
Fréchet distributions. For K > 1, the maximum value under the
Gumbel C model is also given. As in the parametric estimation
problem the largest errors are incurred when K < 1. 1In all cases
the effect of a departure from independence is the largest when p
is small (i.e. for large x). The effect decreases as K increases
reflecting the fact that vhen K1, > > A, the majority of
the system failures are due to the failure of the first component.
Figures 6A, 6B for p = .25 and 7A, 7B for p = .5 are plots of
A l(p) for the five models and K = 1.5, .67,
respectively. As in the previous figures one can see that for
even a small departure from independence the relative effect of

dependence can be quite large.

4. Conclusjong

The results presented in this paper show that for all five
bivariate exponential models one may be appreciably misled by
falsely assuming independence of component lifetimes in a series
system. The amount of error incurred in modeling system
reliability not only depends upon the cofrelation between
component lifetimes but also on the level of system reliability.
The error {n modeling mean system life similarly depends upon the

correlation and the length of mean system life. Both quantities

" depend on the relative magnitudes of the parameters.

For the dual problem of estimating component reliability
based on data from a series system, it appears that departures
from independence are of greater consequence. Both parametric
and nonparametric estimators of relevant component parameters are
inconsistent. Bias increases dramatically as the correlation

gets further from zero.
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APPENDIX 1
. Formulas for expected system life,
FIRY |
Gumbel A: exp (2,+1.)2 n e _l:_& g
Y — T
4, 3, o) 12 (A1.1)
where o(:) is the survival function of a standard normal random
variable.
Gumbel 1 °f 1112
um B: +
(Al+12) (11+12y(211¢12)(11+212) (A1.2)
Guabel C: (z:*x;)'l/' (A1.3)
Downton : (2,+2,)(1-p) '
2
((21+12) - 40 A3,) . {A1.4)

z 2,2
. Ezl‘xz) - 42,2 - e 1112](11+12 - 20 2,2,)

2
21122((11+12) - 4p 2112)

Oakes : found by numerical integration

APPENDIX 2

Formulas for p = P(x] < xz):

Gumbel A - P(x1 <'x2)
= (A020%\ [ 2,42
= 1/2 + (11-12) exp [ | >0

412 422 24

where &(+) Is the survival function of a standard normal
random variable. (A2.1)

Gumbel B - P(xl < Xz)
/ll 40 32(11-12)

= +*

(llwlz) (/llw'(z)(/'(1 + 212)(211 + 2

2) (A2.2)

K.
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Guabel C - P(X; < X,)
]
4

)
(llﬁlz) (A2.3)
Downton - P(x1 < xz)

- 21112(1-9)

[ 2 f 2
d((11+12) - 40 2112)(11~12) + 4(11*12) - 49111

2
(A2.4)
Oakes - P(X1 < xz) found numerically.
APPENDIX 3
Gumbel A .- ﬁl(x) = exp(-2;x - zlzxz)
(A3.1)
Guabel B - f (x) = exp ] - S" (1 + 40(1-exp(-4,t)) (1-2exp(-4,t)))
dt
0 (1 + 4p(l~exp(—12t))(l—exp(-llt)))
(A3.2)
A:x
Gumbel C - ﬁl(x) = expf - -1
(x‘;q;) "
(A3.3)
Downton - Found numerically due to no closed form solutjon for
F(x).
Oakes - ﬁl(x) =expd- (% Ajexp(2, (8-1)t) dt
0

(exp(ll(v—l)t) + exp(/lz(a—l)t) -1)

(A3.4)
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BOUNDS ON NET SURVIVAL PROBABILITIES

FOR DEPENDENT COMPETING RISKS

by
.1 2
John P. Klein® and M.L. Moeschberger
Departments of Statistics1 and Preventive Medicinez.

The Ohio State University, 1958 Neil Avenue,
Columbus, Ohio 43210, U.S.A.

SUMMARY
Bounds on the marginal survival function based on data from a
competing risks experiment are obtained. These bounds require an
investigator to specify a range of possible concordances for the times to
occurrences of the competing risks. These bounds are tighter than those

of Peterson (1976).

Key Words: Compet ing Risks, Product Limit Estimator, Net Survival
Function, Coefficient of Concordance.




1. Introduction

A common problem encountered in biological and medical studies (both
animal and human) is to estimate the marginal survival function of the
time X, from some appropriate starting point, until some event of interest
(such as the occurr:nce of a particular disease, remission, relapse, death
due to some specific disease or simply death) occurs. Often it is

impossible to measure X due to the occurrence of some other competing

event, usually termed a competing risk, at some time Y(< X). This

competing event may be the withdrawal of the subject fiom the study (for

whatever reason), death from some cause other than the one of interest, or
any eventuality which precludes the main event of interest from

occurring. In such instances the actual time until the main event of
interest occurs can be regarded as censored (see David and Mueschbherger
{1978) for further discussion of such censoring). With such a competing —
rrisks representation, it is often assumed that this censoring time is
independent of the main event of interest. This allows for tI  consistent
estimation of the marginal distribution of X, S(x} = P{X>x]. This
assumption of independence is also made in more complex analyses of
competing risks experiments such as the use of log-linear models for the
analysis of survival data (Holford (1980)), the analysis of proportional
hazards regression of censored data (Cox (1972)), computation of
Hodges~-T.ehmann like estimators with censored data (Wei and Gail (1983)),
to name a few.

A standard statistical estimator of the survival function which
assumes such competing events (or risks) to be independent is the Product
Limit Estimator of Kaplan and Meier (i958). This estimator is
nonparametric and consistent for the class of constant sum survival models

defined by Williams and Lagakos (1977). When the risks are not in this

o _ |




class the Product Limit Estimator is inconsistent and, in such cases, the
investigator may be appreciably misled by assuming independence (see
Lagakos (1979), Lagakos and Williams (1978), Moeschberger and Klein (1984)
for details).

In the competing risks framework we observe T = minimum (X, Y) and I =
x(X £ Y) where x (+) denotes the indicator function. It is well known
{see Basu and Klein (1982) for details and references) that the pair (T,I)
provide insufficient information to determine the joint distribution of X
and Y. That is, there exists both an independent and one or more
dependent models for (X,Y) which produces the same joint distribution for
(T,1). However, these "equivalent" independent and dependent joint
distributions may have quite different marginal distributions. In light
of the consequences of the untestable independence assumption in using the
Product Limit Estimator to estimate the marginal survival function of X,
it is important to have bounds on this function based on the observable
random variables (T,I) and some assumptions on the joint behavior of X and
Y.

Peterson (1976) has obtained general bounds cn the marginal survival
function of X, S(x), based on the minimal and maximal dependence structure
for (X,Y) obtained by Fréchet (1951). Let Pl(x) = P(T > x, I=1) and
Pz(x) = P(T > x, 1=0) be the crude survival functions of T. The bounds
are Pl(x) + Pz(x) < S{x) ¢ Pl(x) + PZ(O).

These bounds allow for any possible dependence structure and can be

very wide.
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Slud and Rubenstein (1983) have obtained tighter bounds on S(x) in
this framework by utilizing some additional information. Their method

requires the investigator to bound the function

p(t) = [{s(t)/q,(O)} - 1] [{s(e)/F()} - 11, (1.1)
where

s(t) =~ d S(t)/d t, F(t) = P(min(X,Y) > t) and

q;(t) = d_ P(T < t, X< Y). Knowledge of the function, p(t),

dt
and the observable information, (T,I), is sufficient to uniquely determine

the marginal distribution of X. The resulting estimators gp (t) are
decreasing functions of b('). The resulting bounds are obtained by the
investigator's specification of two functions,pi(x),(ol(x) < Oz(x)) so
that if the true p(x) function is in the interval [ol(x), oz(x)], for
(0 <80 <5 (.

2 1
In the sequel we obtain alternative bounds on the marginal survival

all x, then Sp

function utilizing slightly different additional information. We assume
that the joint distribution of the time until death and censoring, (X,Y),
belongs to a family of distributions indexed by a dependence measure 8
with arbitrary marginals. For this family, knowledge of §, along with
the observable information, (T,I), is sufficient to uniquely determine the
marginal distributions of X and Y. The resulting estimator §e(t) is a
decreasing functionof 8 so that bounds on S(t) for the family of joint
distributions is obtained by specifying a range of possible values for 9.
2. Tle Model

The dependence structure we shall employ to model the joint distri-
bution of t¢ime until death and censoring time was first introduced by
Clayton (1978) to model association in bivariate lifetables, and, later,

'

by Oakes (1982) to model bivariate survival data. A revision of this

model, with an underlying exponential structure, has been proposed

~3-
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by Lindley and Sigpurwalla (1985) and Hutchinson (1981) as a model for
system reliability in an engineering context.

Let S(x}) = P(X > x) be the univariate survival function of death and
R(y) = P(Y > y) be the probability of not being censored before time
y (S(0) = R(0) = 1, S and R continuous functions). For 8 > 1, define
F(x,y) = P(X > x, Y > y) by

F(x,y) = [i;_l;}g'l . {' 1 } -1 _, - 1/(0-1) (2.1)
S(x) R(y)

This joint distribution has marginals S and R. As d-1, then (2.1) reduces

to the joint distribution with independent marginals. For 8-« ,F(x,y) -~
min (S{x), R(y)) the bivariate distribution with maximal positive
association for these marginals. If (Xi. Yi) and (Xj, Yj) are
independent bivariate random variables with survival function (2.1) then

the probability of concordance is P [(Xi - Xj) (Yi - Yj’ > 0] = 8,/(6 ~ 1)

so that Kendall's (1962) coefficient of concordance is r = (8 - 1)/(8+ 1)
which spans the range 0 to 1.

The model (2.1) can also be derived from the following random
environmental effects model. [Let XO and YO denote the potential time
to failure from the two risks, say death from a particular cause and death
from some other cause or causes. Suppose that in a perfect enviroument
XO and YO are independent with survival functions So(x) =
exp(- 500701+ 1) and Ry(y) = exp(- R(y) %1 + 1), The individual
lives in an environment where various environmental stresses or biological
exposurcs may produce a random effect W which, in turn, changes the
potentijial times to occurrences, XO and YO' to X and Y with survival
functions Sg(x) and Rg(y), respectively. A value of w less
than one implies a joint improvement in the survival probabilities for the

two risks, while a value of w greater than one implies @ joini

degradution.l [f W has a gamma distribution with density
1) ! ow . . . .
giw) = w e then the unconditional distribution of

4=

———— ]
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(X,Y) follows the form (2.1). The stresses or exposures which produce
this random effect w may be different biological exposures that are
characteristic of the individual's behavior, such as smoking or they may
consist, in part, by exposure to an environmental agent, such as asbestos.

This model also has a physical interpretation in terms of the

functions A(x|Y = y) = lim Pr(x5x<x+Ax|¥:y. x%f!}
Ax-+0

- aX

and A(x|Y > y) = lim Pr(§§¥<x+Ax!§;y, xgxi} , the hazard functions
Ax-+0

of X given Y = y and X given Y > y, respectively. These hazard functions
specify the instantaneous rate of death or failure at time x, given that
the individual is censored at time y or later than y, respectively. From
(2.1) one can see that

A(x]Y = y) = 8A(x]Y > y)
or

P(X > x|¥ = y) = [P(X > x{¥ > y)1° (2.2)
For & > 1 the hazard rate of death, if censoring occurs at time y, is 8
times the hazard rate of death, if censoring does not occur at time y.
This implies that the hazard rate, after censoring occurs, is accelerated
by a factor of @ over the hazard rate if censoring had not occurred. Also
when 8 = 1, (2.2) reduces to the condition required by Williams and
Lagakos (1977) for a model to be constant sum and hence for the usual
product limit estimator of S(t) to be consistent (See Basu and Klein
(1982) for details).

For fixed marginals S and R the joint probability density function,
f(x,y), can be shown to be totally positive of order 2 for all 8 > 1.
This imiplies that (X,Y) are positive quadrant dependent. In particular,
one can show that, for S, R fixed, the family of distributions
F = {(F(x,y): 8 > 1} is increasing positive quadrant dependent in 6 as

defined by Ahmed, et al. (1979).




h 3. Bounds on Marginal Survival
. Suppose that X and Y have the joint distribution (2.1) and let

T = min (X,Y), then the survival function of T is

1
F©) = gl -+ gyl 0 - 17 BT (3.1)

and the crude density function associated with X,
q,(t) = 4 P(T<t, X<Y), is given b
1 dt ’ ’ g y
t
a (6) = 2L (re)f, (3.2)
sV (t)
wheie s(t) = -dS(t)/dt.

Now consider the differential equation
Sty = ¥
s(t)/s7(t) = q, (e} [F(r) (3.3)

and suppose 6 is known. Then the solution of (3.3) for S(t) is

1
t  q,(u) Y
[1 + (8-1) [ 1 du]—(e-l) if 6>1

S,(t) =
o [F (w)P
(3.4)
= exp( -~ ? Eliil du) ifg=1
P 0 F(U) u = .

The functions F(+) and ql(') are directly estimable from the data one

sees in a competing risks experiment. Let T . Tn denote the observed

l’

test times of n individuals put on test and let Ii’ i=1, ..., nbeloro

according to whether the Ti was an observation on Xi or Yi‘ respectively.




Define p(¢) = zx('r1 > t)/a and Ql(t) - [x (Ti <et, [1 = 1)/n.
i=] i=]1

Then if @ is know, a natural estimator of Sa(t) is

“~

~ 1 '
dg; (v) 7~ @-D!

~ c ———————
Se(t) a[fl+ (8-1) 5 [E(u)P . if 9>1
(3.5)
¢ d&l (u)
exp( - | — ) ifo=1
0 F(u)

For 8 = 1, this estimator is of the form of the hazard rate estimator
proposed by Nelson (1972). The estimators (3.5) can be expressed in the

following forms for computation purposes when there are no ties.

- —

1
. _ ) 1 o-1
Se(t) r 1+ (6-1)ne 1 2 (n-i+1) 8 if 8> 1

@ (3.6)
I = °
J ™t
|- E wm '
P T - (n-1+1) if 9 = 1
(i)—
I = 1
L (1)
where T(l)' e T(n) are the ordered death times or censoring times.

For 9 known and if the true underlying joint distribution of (X,Y) is
of the form (2.1) then Sa(t) is a consistent estimator of S(t) as

shown in the Appendix.

To obtain bounds on the net survival function based on data from a
competing risks experiment, we proceed as follows. First, note that from

(3.4) it is true that Sa(t) is a decreasing function of 6 for fixed t.




t
Also, as 8 - 1" we have Sa(t) t exp (-f F*l(u)dQl(u))
0

which provides an upper bound on S(t)}. Notice that this upper bound
corresponds to an assumption of independence. As 8 - « one can show that
Sa(t) + F(t) which corresponds to Peterson's {1976) lower bound.

In practice the above bounds, with 8 = 1, «, while shorter than
Peterson's bounds may still be gquite wide. Tighter bounds, in the spirit
of Slud and Rubenstein, may be obtained if an investigator can specify a
range of possible values for 8, (8., 8

1 %)
then S, (t) > S(t) > S, (t).
5 5,

If the sample size is

sufficiently large and 91 < 8 < 82,

Two approaches to specifying 81, 8. are -appropriate. From (2.2) note

2
that 8 = A(x]|Y=y)/A(x|Y>y) for all x., y, so that 91 and 82 are
reflections of the investigators belief in how the hazari rate of X would
be effected by knowledge of the occurrence of censoring at time y.

Secondly, specification of 01, 8_ is equivalent to specifying a range

2
of values for the coefficient of concordance, v, between failure time X

and censoring time Y, since 8 = (1 + t)/(1 - ).

4. Examples and Discussion

To illustrate the bounds obtained in the previous section consider an
experiment perforﬁed at the Oak Ridge National Laboratory. The experiment
we consider consists of treating a group of 246 RFM female mice with 75
rads of gamma radiation delivered at 45 rads/min. at 12 weeks of age.
Mice which were judged by the biologist to be moribund and not likely to
survive until the next observation period (either overnight or over the
weekend) were sacrificed. This action, which caused mice to be removed

from the study before the endpoint of death was observed, was necessitated




by the need to determine by necropsy which of several types of tumors the
animals had at death since the status of such tumors was difficult to
determine in animals which lay dead in their cages for an extended period
of time. The value of t=1 (f#==») assumes that the moribund animals would
die at a time coincidental with the sacrifice time. It should be noted
that the data was actually analyzed under this assumption. Animals which
were sacrificed prior to a weekend were probably more likely to live an
additional time due to the conservative nature of the decision making. It
is clear that the sacrifice (censoring) time and death time of these
animals are highly associated, the value of t probably being somewhat less
than one.

A lower bound of r, though somewhat subjective, may be based on the
investigator's experience with such experiments where moribund mice were
not sacrificed. In this instance, 7 of .8 seems reasonable. The value of
ée(t) for = .8 and 1.0 as well as the product limit estimator
assuming independence (a statistical procedure which may also he used by
some people) is depicted in Figure 1. One can see that the bounds for the
survival function f[assuming .8 € 7 € 1.0) provide a relatively tight band
of survival functions. It is also clear that the product limit estimator
assuming censoring times independent of death times is probably not
approp;iate.

Consider a second study which illustrates a different type of
censoring mechanism. A clinical trial was conducted at The Ohio State
University to determine the objective response rate of patients with
refractory advanced non-Hodgkin's lymphoma to a chemotherapy regimen
consisting of ifosfamide, VP-16, cis-platinum, and bleomycin. Twenty-four

patients were entered (staggered entry) and treated with ifosfamide 750




FIGURE 1
ESTIMATES OF SURVIVAL FOR RFM/UM MICE

@ --ESTIMATE OF S(T): TREATING MORIBUND RS INDEPENDENTLY CENSORED
M --ESTIMATE OF S(T): TRERTING MORIBUND AS DEATHS,T =1.0
+ --ESTIMATE OF S(T): TAEATING,T =0.8

: | T L T 1 1 T 1
.00 15.00 25. O 35.00 45.00 55.00 65.00 75.00 85.00

TIME %10
-10-

;:-----------l--lIllI--l-I-l--I----------.--J




=

mg/m2/day by continuous I1.V. infusion on days 1-5, VP-16 40 mg/m2 1.V. on
days 1-5, cis-platinum 50 mg/m2 I.V. on day 14, and bleomycin 15 units/m2
1.M. on day 14. The regimen was repeated every four weeks. Patients were
evaluated at the beginning of each course for objective response based on
change in size of bidimensionally measurable solid lesions. Ten patients
were removed from study due to progressive disease [defined as a 25% or
greater increase in the size of measurable lesions]. This is an
indication that the patients are doing quite poorly. Eight patients were
removed from study due to stable disease after three courses (an
indication that the disease is still not in remission). Six patients died
during study course. This study is fairly typical of small scale
chemotherapy trials conducted at the center.

As in the previous example, here the times for patient removal from
the study (censoring times) are clearly not independent of death times.
The determination of bounds for 7, in this instance, is not as obvious.
However, we think there are some reasonable possibilities which utilize
the clinician's subjective understanding of the history and progression of
the disease. .

First, the clinician may be asked to select an upper and lower bound
for ¢ from a set of classifications for association such as no
association, v = 0; weak association, t = .25; moderate association, t =
.50; strong association, t = .75; or perfect association r = 1.0. Second,
the clinician may be asked to give a range of 7 on a scale of 0 to 1. We
note that this may be hard to obtain due to the physician's unfamiliarity
with the concordance coefficient (see Kadane (1980) or Winkler (1980) for
a discussion of this problem in the elicitation of opinion in the linear
model framework). Third, if the clinician cannot make either of the first

two judgments then he/she could be presented with a set of partial death
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or censoring times, such as ( , 120), (77, ), (82, ), ( ., 113), etc.
and asked to guess upper and lower bounds for each missing time, or as in
Kadane et. al. (1980) to provide quantiles of the predictive distribution
of the missing times. Based on this information an upper and lower <t
could be computed. The program TROLL, described in Kadane et. al. (1980),
which was designed to elicit opinion about the prior distributions of use
in linear regression could be used to cbtain a prior confidence interval
for the value of the correlation coefficient p under an assumption of
normality and then using the transformation z=(2/7) arcsin Jp a range of
values for t is obtained. In an attempt to provide a more stable estimate
of this range, a group of clinicians may be asked to make such estimations
and the group's values may be used to obtain a range on .

Finally, charts of patients treated with this regimen might be
reviewed and information from these charts be used to estimate the missing
times. Information in the literature may also be used to estimate the
missing times. Confidence interval methodclogy for t may than be used to
obtain a range of 7.

In Figure 2, we have plotted é(t) for various values of t which
correspond to a broad subjective range of t. Based on discussion with
physicians in the OSU Comprehenzive Cancer Center, a subjective range for
t was from weak to strong association between times to progression or

stable times and death times. This suggests using bounds corresponding to

T = .25 to t = .75.




FIGURE ¢
BOUNDS ON SURVIVAL FOR NON-HODGKINS
LYMPHOMA PATIENTS
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Appendix

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)

respectively. Let & > 1 be known. Then on the set where S(t) > 0 we have

Se(t) + S(t) a.s.

-
Proof of Theorem 1:

For 8 = 1, the result is well known. Suppose that 8 > 1. Note
that 61(t) > Ql(t) = P(T < t, x-y) a.s. and F(u) + F(u) a.s. by the strong
law of large numbers. Since ge(t) is a continuous function of
¢ -

dQ, (u) .
= 8 in the support of F(u), it suffices to show
( 0 [F(u]
t - t '
dQ, (u) dQ, (uw)
1 1
I — B > 9 a.s
0 [F(u)] 0 [F(u)
. Now, after an integration by partz,
t A A
dQ, (u) Q)
1 _ 1 1 1
PN 6 - A e— Ql(u)d(:e )
0 [F(uw]) [F(t)]” © F (u)
|
Q) ot 1 t 1
=T~ 1 QW - wWldZ )+ Q(wd(zy )
(Fen™ F* (u B (w)
0
Q, (t) - ()
1 1 ~ 1
= = 5 - 00 (u) - quldlzg )
(F (u)] 0 F(u)
©dg (u)
+ 1 = 5
0 F (u)
By the dominated convergence theorem
t t
lim dQl(u) - dQl(u) as
g [Few)f 0 o
(F ()P .

- , | |




1m QO - Q@)
=0 a.s.,

e [F (u)]® -

and R
lim sup {lQl(u) - Ql(u),} =0, a.s.

noe

Hence, applying the above results to (3.7), the result now follows: //
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FROM A BVARIATE SERES SYSTEM
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The problem of testing for independence of the component ifetimes when the components are
linked in serigs is considered. To avoid the problem of nonidentifiability, the marginal component
ifetimes are assumed to be known. In this setting, a modified version of Kendall's tau is proposed.
This test statistic is obtained by replacing those component lifetimes which cannot be observed, due

. to system failure, by conditional probabilities computed under independence. A small scale
simulation study of the power of this test shows the test has reasonable power for relatively small
sample sizes.

1. DEPENDENT SYSTEMS

A common assumption made in modeling series systems is that the tomponent lifetimes are
statistically independent. This assumption is also routinely made in analyzing data collected from
series systems. Recently, Klein and Moeschberger (1983) and Moeschberger and Klein (1984)
have shown that one may be appreciably misled by this independence assumption for certain
bivariate exponential systemns.

I To illustrate the effects of this independence assumption, consider the foliowing two models
for the joint survival function of the component lifetimes (X,Y). The first model, due to Oakes
(1982) has joint survival function

Hix,y) = P(X>x, Y>y) = [[1F())*1+ (1/G(y)) &1 _,]"/(0 1), 0 >1 (1.1)

where F(°), G() are the marginal survival functions of X and Y respectively. This distribution has
a coefficient of concordance t = (6-1)/(6+1) and 8 = 1 corresponds to independent component
n faiture times. if A(x{Y=y) and A(x|Y>y) denote the conditional hazard functions for the conditional
- distributions of X given Y = y and given Y > y, respectively, then A(x|Y>y) = 6A(x|Y>y).

A second model, due to Gumbel (1960), has joint survival function
Hix.y) = FxIG(y){1+a(1-FONOI-GYN, - 1 <a <1 (1.2

This model has coefficient of concordance t = 20/9 which, unlike the Oakes model, may be both
positive and negative.

To illustrate the importance of the independence assumption in modeling the system life,
consider figures 1 and 2 where the 95th and 99th percentile of system life is plotted for the two
models with exponential marginals. Here in all cases the first component has unit mean life. For
the Gumbel model, the true percentile ranges from 80% to 115% of the percentile computed under
independence, while inmeOakesmodel,thetruepercenﬁlemnbeasmud\aswcea_sbigasm
percentile computed under independence when A = A4 and as much as 1.5 times as big when x5 = 2.
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lifetimes, it is desirable 1o test this hypothesis based on data from series systems. However, if no
assumptions about the underyling distribution of the component lifetimes is made, such a test is
imposgible due to the identifiability problem (see, e.¢., Tsiatis (1978), Miller (1977), Basu and
Klein (1982)). This is, given any set of observable information (such as system fife, crude
system life, eic.) collected from a series system with dependent component lifetimes, there exists a
series system with independent component lifetimes with e same observable information (see

, Proschan and Quinzi (1981)). However, this comparable system of independent random
MMMMMWWWWMMSMWMW
In particular, the marginal distributions of the two systems are the same only for the class of
constant sum models defined by Williams and Lagakos (1977).

In the next section, a modification of Kendall's (1938) test for independencs is proposed.
This test assumes that the marginal component life distributions are completely specified. This
information couid be obtained by testing each companent separately, as is often done in the
development stages of system design (see, e.g., Easterling and Prairie (1971), Mastran (1976),
or Miyamura (1982)). In section 3, a simulation study compares the power of this test to the
parametric tests based on the Oakes and Gumbel models.

2.  THE TEST PROCEDURE

Suppose that n two component series systemns are put ontest. Let X;, Y; dencte the potential
(unobservabile) failure times of the first and second components of the ith systems. We are not
allowed to observe (X;, Y;) directly, but instead we observe T; = min(X;, Y;), the system failure

time and

1Ty =X,
={ the cause of the system failure
0 Ty=
Also suppose that the maginal survival functions of X; and Y;, F(x) = P(X; > x) and G(y) = P(Y; >
y), i=1,.,nare known.

if we could observe both X; and Y;, then a test of independence, due to Kendall (1938), is to
count the number of concordant pairs and the number of discoardant pairs. A pair (X;, Y;), (X;,
Yj) is concordant # X; - X; and Y; - Y; have the same sign and is discordant if these differences
have different signs. The test statistic is then the number of concordant pairs minus the number of
discordant pairs.

if the data comes from a series system, then only T;, |; is observed. Suppose we consider a
pair (T, ;). (T,.I)withT <T, 4 =1and I]-1 then we know that X; = T; <X =T and X;
<Y; X; <Y;. This pair would be concordant, regardiess of the value of Y, itT; <Y <T nY >T;
concordanceordscordarmdependsonmvade U\dermenullhypothesasdmdependeno&
the conditional probablity that the pair is concordant is [é(l’ i) - (-i(T i)]/é(T =P <Y< Ti|Y >
Ti)sinoeavefagecmcordameover\tnrangeY>Tjiso. When|;=1and ;=0 then Tj= X < Y; =

X <Y; Y <X;. Hereit Ti< Y; <T the pair would be concordant, and it Y, >T the pair wouid

be dlscordam whatever the vaiue of X Under mdependence the conditional probablmes of these
two events are [G(T - G(T )1/G(T,) and G(T l)/G(T,), respectively. Should |; = 0, similar
probabilities, involving F, could be obtained. This motivation suggests the following score function

for Ty < T;.
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‘ (G(T;) - GTYYG(T) it h= b= 1
F (BT - FOIFT) ith=g=0
«Ti'li'Tj'lj) - [9(1") - 2GGJ)WEI) ifli=1, 'i =0 (2.1)

I [F(T}) - 2F(T)F(T) 5 =0, =1

and similarly for T; > T

The modified version of Kendall's test statistic is

t=X I T G Tl (nin-1)2) (2:2)
1sicisn
To find the moments of ¢, under independence, consider the pairs

M1 1) (T2, 1) Lot Ay =Ty <Tp lymlp =1}, Ap=(Ty<Tp Iy = 1, lp = O}, A = [Ty<
T2 l4=0,1p=0tand Ay = (T4 < Tp, Iy =0, Ip = 1}. in terms of the unobservable component
Iifeﬁﬂ\es,(xi,Yi),A1-(X1<X2,X2<Y2,X1<Y1]A2-(X1<Y2,X1<Y1.Y2<X2}, A3=(Y1<
Y2,Y1<X1.Y2<X2)andk4-(Y1<X2,Y1<x1.X2<Y2}. Since,bysymmetry,T1 is equally
likely to either smaller or larger than T, we have

Glx1)-Glxp)
(2EWT 1,0y T2l =f  —ae—— = dF(xq)dF(xp)dGly1)dGlys)
Ay G(xq)

Gix4)-2G(y,)
s =22 4Ry )dF(xp)dGly;)dGlyg)
Ay G(x4)

Flyy)-Flyo) 23)
s a2 4F(x,)dF(x)dGlyy)dGly)
- Ag Flyq)

Fly1)-2F(xp)
s a2 4F(xy)dF(xp}dGlyy)dGly,)
Ay Flyq)

=Jy +dp +J3 + U4 (say).

Now, consider
Yy +dam [0 (GG IGyaF(y) + 1 [Bx)-2B(y)Fiy)dG(y)dF(x) (2.4)
- X X

Integrating the first inner integral in (2.4) by parts yields the negative of the second integral so
thatJy +Jp = 0. Similar computations show that J3 +Jg = 0. Thus E(e(T4, Iy, Tp, Io)) and

hencaE(’rSarebotho. By similar computations, one can show that

n(n-1)VQ) = (4/3) | G)2dF(x) + (473) | F(x)2dG(x)

-00
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-4 {81 IF(y)G(y)2dG(y)dF(x)

haad X

- 4 F (0" Giy)Fty)2dF (y)dG(x)

- X

+ 4(n-2) (/3 - 2| F(x)G(x)d(F(x) + G{x)) (2.5)

--0

-2 TF(x)ZG(x)Zd(F(x) +G(x)

-0

+3 I';:(x)zG(x)dF(x) +3 !‘;(x)e(x)zde(x». where F(x) = 1 - F(x)
~e0 oo and G(x) = 1 - G(x).

The asymptotic normality of « follows by the results of Hoeffding (1948). Hence, a test of
independence versus dependence rejects it {/ V()| is greater than the appropriate percentage
point of a standard normal random variable. A test of independence versus positive dependence
rejects it & V() is too large. A

The va-ianooof?(zS) can be expressed explicitly in several cases.

Case 1. Fx) - (_S(x). In this case (2.5) reduces to

V@) = (4n+7y(30n(n-1),  _ (2.6)

Case 2. (Lehmann structure) F(x) = G(x)®. Here (2.5) reduces to

n(n-1)V(D) = 8of35a + n(9a2 + 2a + 9)J[3(3a + 1)(3 + a)(2a + 3)(3a + 2)}. 27

Case 3. (X, Y exponential), F(X) = e~ *X, G(y) = 09, then (2.5) reduces to

n(n-1)V{) = 810(3518 + n(9A2 + 219 + 962)] (2.8)

3(3% + 8)(A + 36)(2A + 36)(32 + 20)

When the true valugs of F, G are misspecified, then E(%) is not zero. If the true component
litetime distributions are F, G but F2, G are used in formula (2.3), then one can show that, under

m
ER) = 2(1-8) | G(x) 1B | F(y)Gly)BdG(y)dF(x)

-on X

+2(1-a) | F(x)'-%§ Gly)F(y)*dF(y)dG(x), o B > O.
X

-~an

It F(-) = G(), then E() = (-1)/2(B+2) + (0-1)/2(a+2).
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i F(x) = G(x)®, then E() = (8/(6+1)) {{a-1)/0+a8+1) + (B-1)/(0+B+1)}.
Similar expressions can be obtained for the null variance of 4. -
3. SMULATION STUDY

To study the effectiveness of the modified Kendail's t described in section 2, a simulation

study was conducted. The study was performed by generating 1_000sam esotn-zooMOsenes
systems with exponentially distributed component life times, F(x) = e°X and G(y) = e™*2Y, Ap=

1, 2. Both the Oakes joint distribution (1.1) and the bivariate Gumbel distribution (1.2) were

used. The bivariate observations from the Oakes distribution were generated using the technique &=
described in section 2 of that paper. To generate Gumbel random variables with marginal survival -
functions F(x), G(y), let Uy, U, be independent uniform random deviates. Note that

Fxly) = P(X > X]Y = y) = F(x)(1+a-2aG(y)) - oF(x)2(1-2G(y)). 3.1)
Let Uy = Gly) and Uy = Fixjy) = F(x)[1+a-2aU4] - aF (2(1-2U5).

Solving this equation for F(x) yields

Flx) = U* = [(1+0{1-2U4)) - af1+a2(1-204)2 + 2a(1-2U4)(1-2U4)) /2]
12a(1-2Uy), Uy = 172 (3.2)

wmwlsﬂwtootwhtchllesmthelmervallo 1]. #Uq = 1/2, then U* = U,. The pair (X, Y) is
then found by X = F-1(U"), Y = G-1(U;).

For the purpose of comparison, the parametric tests for independence, based on the efficient
scores statistics, for the Gumbel and Oakes model were obtained. Consider first the Gumbel modei
{1.2). Using the notation in section 2, the observable crude density for | = 1 is

- (d/dt) P(T>t,1=1) = qq (1) = HOG([1 +a(1-F()-2G(t) + FnG(v)) —

where f(t) = -(d/dt) F(t). and a similar expression for qg(t) when | = 0. Based on a sample of n
series systems, the likelihood function is

n
Lia) = ITay(t)' aget ' (3.9)
j=1
After some simpilification, the likelihood equation ata = 0 is

“ v — - — - —
(d/da) InL(a) | =Wa=n-L Ft) + Gl - FKGEY) + §G() + (1-F(Y)
a=0 j=t

Also, whenXaMYareexpormdwuhparamersu, Ao, respectively, then
a2 = - E(d2 In(a)/da?) = n (7/3 + (Aq+ 4 Ao)/ (Aq+ 3Ag)

+ (2% 40 Aq + 3hp) -4l{ Ay + D2 hq+ 3Ap) + (22q +Ag)
@y + 22))).
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normal distribution when a = 0.

For the Oakes model (1.1), the crude density functions are of tha form

Q1 (1) = HAVFO() S)® where (3.4)
S® - [(WFP ! + pG@ye 11 - Ve -1) (3.5)
From (3.3), the log likelihood for @ is

n
InL(8) = - _210 'lal + (1-|j)bi +0 (lnDi)/(e -1) (3.6)
‘-
where a; = -Inl?(ti). by=- Inc-i(ti). and D} = {e{@-1)8j , g0 -1)bj .4},
The likelihood equation is

n n
(d/de)in L(e) = if g + (1-5)by - (1 + 1 -1)E (3 ol&-1)g by e(°'1)bwoi
1 jm1

n .
+(e-1)2 % InD; (3.7
jm1
n n
which is equai to V '.21(ai'i*(1' i)bl) + _21(aib,-aj-b,) (3.8)
j= j=

as 0 »1*. The E(-(d2/de2) InL(g)) at 8 = 1, under the exponential model is
a2 = 2n A4 Al Aq+ A9)2 30 the resuiting score statistic is

n n
Za .‘ﬁ'i‘ AT+ (14 2gTj + £ 1;, AT - (A4 2)T)) - (0q +20)(2n 2 Ag) 172
]- ]-

which is approximately standard normal for large nwhen g = 1.

The results of this study are reported in table 1. From this table it seems fike the modified ¢
test has reasonably good power when compared to the parametric tests, although comparison with
the Oakes score test is hard since the significance level of that test is inflated. Also the test based on
the Gumbel scores has comparable power when the data is from the Oakes model. A test for
normality done on the samples where the components were independent accepted the nomality
assumption for the modified < test.

Table 2 reports the observed number of rejections when the component parameters are
estimated based on independent samples of size 50 for each componert. A .05 significance level was
used. Here, when 14 = ), all tests have inflated leveis. When 14 = i, the tests are conservative.

All tests have comparable power when A¢ = Ao, however, the modified « test has significantly
higher power when &4 2.
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In addition to the power of our modified test, the E(t) was estimated for each sample. Except
in the independence case, the simulation showed that E(x) = .35¢, suggesting tis of limited use as a

point estimator of <.
TABLE 1
Estimated Power Using True Parameter Values
Based On 1000 Repiications
MOOFEDs QAESSOORE

MO0, D 1 a=05a=.025 a=05 a=.025 a=05 a=.025
Independent (Ay=1) 20 0 50 25 71+ 52+ 58 37
Independent (Ay=1) 40 0 42 21 57 34 54 36
independent (\o=2) 20 0 53 25 74+ 52+ 62 34
Independent (\,=2) 40 0 55 32 74+ 49+ 69 37
Gumbel  (Ay=1) 20 126 99 55 115 88 133 78
Gumbel  (Ap=1) 40 .125 158 96 159 124 192 124
Gumbel  (Ap=2) 20 .125 119 74 128 88 141 100
Gumbel  (a=2) 40..125 158 88 146 111 176 116
Gumbel  (Ap=1) 20 222 182 117 172 130 245 175
Gumbei  (Ap=1) 40 .222 283 199 239 - 179 323 257
Gumbel  (Ay=2) 20 .222 188 110 160 130 205 143
Gumbel  (Ay=2) 40 222 278 181 221 159 316 237
Oakes (Ap=1) 20 .125 170 114 236 202 184 137
Oakes (Ap=1) 40 .125 224 154 327 273 247 185
Oakes (Ap=2) 20 .125 166 101 217 207 179 125
Oakes (Ap=2) 40 .125 228 148 313 253 248 166
Oakes (Ap=1) 20 .25 318 243 421 377 379 295
Oakes (Ap=1) 40 .25 484 394 614 551 510 443
Oakes (Ap=2) 20 .25 334 223 386 335 354 273
Oakes (Ap=2) 40 25 513 338 5§55 482 522 407
Oakes (\p=1) 20 50 638 535 704 670 680 606
Oakes (\p=1) 40 .50 880 802 903 875 881 851
Oakes (Ap=2) 20 .50 657 589 615 547 674 593
Oakes (Ap=2) 40 .50 894 823 816 772 873 820
Oakes (\=1) 20 .75 799 722 803 763 858 795
Oakes (Ap=1) 40 .75 973 946 983 968 925 900
Oakes (\=2) 20 .75 899 847 699 &N 823 763
Oakes (\p=2) 40 75 995 989 924 884 985 961

N
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TABLE 2
Estimated Power Using Estimated Parameter Values
and 0.05 Significance Level
Modiified £ Qal@s Soore Gumbel Score

T Ayl Agm=2 Aq=l  Ap=2 Ag=1  A=2

b ]

83 18 % 1 89 1

0 64 17 83 1 81 1

20 125 138 42 14t 3 159 4
40 125 214 30 200 3 242 4
20 22 209 68 201 6 255 10
40 2 33 62 276 10 360 9
20 125 202 48 263 40 211 8
40 125 276 54 354 13 284 1
20 25 327 146 430 S5 388 29
4 25 513 156 628 48 542 20
20 50 638 400 699 93 855 92
40 SO 858 558 827 99 865 102
20 75 781 737 793 76 828 84
40 75 958 916 947 112 962 138
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A Comparison of Several Methods of Estimating the Survival
Function when There Is Extreme Right Censoring

M. L. Moeschberger' and John P. Klein*

Departments of Preventive Medicine' and Statistics?, The Ohio State University,
320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY

When there is extreme censoring on the right, the Kaplan-Meier product-limit estimator is known to
be a biased estimator of the survival function. Several modifications of the Kaplan-Meier estimator
are examined and compared with respect to bias and mean squared error.

1. Introduction

In human and animal survival studies, as well as in life-testing experiments in the physical
sciences, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
product-limit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
a failure time, but rather a censored observation, it is well known that there are many
complex problems associated with any statistical analysis (Lagakos, 1979). In particular,
the Kaplan-Meier product-limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger than the largest observed failure
time, this bias tends to be worse. Estimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biases.

A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-specific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring tiine (280, 420, or 560 days) was reached, at which time all those still alive
in a given group were sacrificed. Often there were many surviving mice in all three groups
at the sacrifice times.

In general, we consider an experiment in which » individuals are under study and
censoring is permitted. Let ), ..., L denote the m ordered failure times of those m
individuals whose failure times are actually observed (1, < --- < In). The remaining
n — mindividuals have been censored at various points in time. It will be useful to introduce
the notation S; to denote the number of survivors just prior to time (,; that is, S; is the
number of individuals still under observation at time ¢, including the one that died at
k,)- Then the Kaplan-Meier product-limit estimator (assuming no ties among the £ ,,) of

Key words:  Adjusted Kaplan-Meier survival estimation; Bias of survival function: Life-testing: Right
censoring; Survival analysis.
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So, by the theorem on order statistics stated at the beginning of this section, the conditional
distribution of Ti.), given Tip-n) = lia-ny (U =n—n.+ 1, ..., n) will be approximated
by the (¥ — n + n.)th order statistic in a sample of n. drawn from (3). For simplicity, let
j=u—n+n,sothatj=1, ..., n. Now the expected value of the jth order statistic from
(3)is

E(T}.n) = nc("-‘ - l) f' tPHOV [PHOYV (ke " 10) dit
J—=1)J,

-m(’,’-‘f ,‘) J: (F* + Y MPON RO ) dy ()

where P( y) = exp(=)*/8), y = (t* — 1£)'/* 3 0 and Tj.,_is the jth order statistic in a sample
of size n.. Equation (4) can also be written as

E(T.a) = 'lc(:': ll) J; (02" + 1) P} '[Pz * k2t dz (5)
where P(z) = exp(—2z), z = ( y/8)'"* 3 0. Now E(T}., ) may be crudely estimated by
(B(E(Z;.))F + 16}V 6

where E(Z,., ) is the expected value of the jth order statistic from a sample of size n.
determined from Harter’s (1969) tables or recurrence relation, and 4 and k are maximum
likelihood estimators of # and k, respectively.

These n. estimated expected order statistics may then be treated as “observed” lifetimes
in adjusting (or “compieting™) the estimated survival function computed in (1). The area
under the estimated survival function up to 1. remains unchanged. The area under the
extended estimated survival function based on the . estimated expected order statistics is
then added to the initial area to obtain a more precise estimate of P(¢) {estimated order
statistic (EOS) extension).

2.2 Weibull Maximum Likelihood Techniques
A straightforward approach to completing (1) is to set
B(t) = exp(—t“/0)  for t> 1. 7

Estimates of k and 6 based on all observations can be obtained by either the maximum
likelihood (WTAIL) or the least squares method. However, our study found the completion
using maximum likelihood estimators was always better in terms of bias and mean squared
error.

One suggestion for ostensibly improving this estimator would be to “tie” the estimated
tail to the product-limit estimator at /.. Two methods were attempted to accomplish this
goal. First, the likelihood was maximized with respect to k and 8 subject to the constraint
that exp(—4/8) = P(tc). This method will be referred to as the restricted MLE tail probability
estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability
in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
squared errors of the survival function and will be dropped from further discussion in this
paper.

2.3 BHK-Type Methods
The Brown-Hollander-Korwar completion of the product-limit estimator sets
B(t) = exp(~1/0%) for t>1 (8)
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3. A Comparison of the Various Methods ’
l A simulation study of data such as that collected at NCTR was performed. Three groups

of 48 lifetimes were simulated with all testing stopping at 280, 420, and 560 days,
respectively, for the three groups. Distributions with mean survival times of 400, 500, and
600 days were used. The generated lifetimes greater than or equal to the sacrifice time for
each particular group were considered as censored. The remaining set of observed lifetimes,
along with the number censored at the three sacrifice times, constituted a single sample.
- For each of the distributions studied, 1000 such samples were generated. Weibull distribu-
tions with shape parameters .5, decreasing failure rate, 1, constant failure rate, and 4,

Table 2
Bias/100 (and MSE/100%) for estimating 90th percentile for various methods of completion
Restricted
Estimated Weibull Weibull
BHK  ordersmtistic  WTAIL  RWTAIL

Distribution “ K-M extensicn extension extension . extension
Weibull 400 -5017" ~2.858 1.691 234 458
(25.185)" (9.358) (16.424) (1.52  (10.812)
k=5 500 ~7.655° —4.620 1.897 A8t 642
(58.604)" 22.711) (24.276) (143199  (21.442)
¢ 600  —10.306" —6.390 2213 T340 1.064
(106.21)" (42.449) (36.895) 254190  (37.911)
400 -3.610° 064° 248 084 067
(13.035)* (1.892) (2.423) (1.980) (2.945)
k=1 500 -5913* 096* 289 121 .306
(34.963)" 2,995 (4.681) (4.361) (5.903)
600 -8.216" 244° 610 418 .550
(67.459) 4.198 (9.247) (8.331) (10.792)
400 ~.045 098* -007 -037 -otl
; (.038) (236" (.060) (.047) {.063)
k=4 500 -1.195 5.324" -.031 -.026 024°
(1.429) (33.091)" (.146) 1a1p 177
600 ~2.554 17.913" 120 .090 068°
(6.524) (355.02)" (.794) (.676) (.641)
Lognormal 400 -2.628" -044° -1.263 -1.758 -967
] (6.908)" (1.526) (1.979) (3.407) (1.673)
k=1 500 —4.680" 213 -2.354 =2.718 -1.908
(21.902)" (2.708) 6.153) (7.909) (4.751)
600 -6.736" 159* -3.507 ~3.766 -2.980
(45.373) (4.764) (13.123) (14.981) (10.257)
400 -.08$ 161 -.038 ~.162" -024°
(.060)* (.409)" (.081) (.065) (.093)
k=4 500 -1.251 32 ~.584 ~657 —.484°
(1.566) (17.654)" (.403) (.495) (.318)
600 -2.621 13.695" -1.214 -1.236 —1.158%
! (6.872) (210.30) (1.616) (1.662) (1.498)®
Bathtub 400 ~3.629" -am 053 ~.104 .105
(13.167)° 7 (2.052) (2.058) (3.190)
p=.1 500 —6.068~ -.457 -0 ~.208 .004®
(36.826)" (2.955)° (4.702) (3.619) (5.245)
600 ~7.997" -~318 043 ~.244 -014°
(63.954)" {4.330) (7.786) (7.608) 9.923)
400 -.347 .143° 276 1.154" 981
2mP (.344) (1.078) 387N 4.747)"
p= 4 500 -1.425 521® 764 1.699 1.718"
2.039) (1.540 (2.067) (8.574) (10.714)
600 -3.554" -137 1320 2.304 2.450
(12.628)" (1.804)° (2.352) (17.530) (22.456)

® Best estimation method.
* Worst estimation method.
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Summanry

Many biotlogicatl or medica) experiments have as their goal to estimate
the survaival function of a specified popuiation of subjects when the time
to the specified event may be censored due to loss to followup, the
occurrence of another event which preciudes the occurrence oT the event of
interest, or the study being terminated before the event of 1nterest
occurs. This paper suggests an 1mprovement ot the Kapian~Meier
proouct-11mit estimator when the censoring mechanism 1s random. The
proposec estimator treats the uncensored observations nonparametrically
ana uses a parametric model only tor the censored observations. OUne
version or this proposed estimator aiways has a smailer bias and mean
sguared error than the product-limit estimator. AN example estimating the
survivai tunction of patients enroiled in Tha Ohio State University Sone
Mmarrow Transpiant Program 1s presented.

Key woras: Censored Observations, Survival Function Estimation.
Proguct-T1imit Estimator
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1. INTROOUCTION

The problem of analyzing cata from experiments or clinical trials for
which the time to occurrence of the primary event of interest (such as
death, appearance of a tumor or other morbid condftion, component tailure,
etc.) may not be directly observable due to tha occurrence of some
competing risk of removal from the study (such as loss to foliow—-up, eariy
termination of the study, failure of a different cause or component than
the one of interest, etc.) arises n biological, medical, or engineering
sciences. ln engineering applications, the data may be censored when one
anaiyzes experiments involving series systems with several failure moaes,
testing of field equipment with a fixed test time and random or staggered
entry, Type [ or Type [[ censorea 1life tests, or any combination thereor.
In medical applications, data may be censored if we are conaucting a
clinical trial with fixed study time and random oOr staggered patient
entry, a clinical trial in which patients are lost to follow-up, or a
clinical trial in which there are muitipie causes of failure but interest
centers on only one of them. 1n all of tnese studies, Interest focuses on
estimating the underiying survival distributfon of the time to occurrence
of the primary event of interest.

In the above settings one of two primary methods of anaiysis 1s
usualily empioyed. First, a distribution-free estimator, suggested by
rapian and Meier (1958) is often routineiy usea. Alternatively, maximum
likelihood methods may be Qsed to estimate the survival function when the
survival distribution belongs to some parametric tamily.

HBoth of these approaches have some shortcomings. While the
raplan-Meter nonparametric estimator has many desirable large sampie

properties, its small sample properties are suspect. In particuliar, 1t s




biased for finite sampies and the magnitude of this bias is 1nversely
related to sampie size (cf. Gross anag Clark (1875)). Recently, Miller
(1983) showed that the asymptotic efficiencies of the Kaplan-Meier
product—1imit estimator, relative to the maximum l1ikelihood estimator of a
paramatric survival Tunction, are low when the censoring proportions are
nigh or for surviving fractions that are close to zero. For low surviving
fractions tne variance of the kaplan-Meier estimator is large and any drop
in efficiency represents a real loss of accurancy. Thus, Miller concliudes
that “parametric modelling should be considerea as a means of increasing
the precision in the estimation of smail tail probabilities.” In
addition, the kaplan—Meier estimator's performance is suspect For small
sampies as noted by Geurts (1985), for nonproportionai hazard rate
censoring, and by Chen, Hollanaer, and Langberg (1982) who state that, for
proportionail hzzard censoring, “for smail sampies the Kaplan-Meier
estimator is biasea ana non-—negligibiy so under neavy censoring at median
to low values of the survival function.’

If the underlying parametric survival distribution 1s Known, then
parametric maximum iikelihood methods are preterred. However, in reaiity,
one rarely has this lnowleage available. This approach assumes a
plausible parametric model and estimation 16 carried out by the method of
maximum likelinood (c.f. Nelison (1982) or Bain (1978)). Typicail models
used are the exponential (McCool (1974)}), the welbull (Bain anc Antle
(1970)), tre normal and Jog normal (Harter and Moore (1965)), the gamma
(Engethardt and Bain (1978)), the log-logistic (Bain, Eastman ang
Engelhardt (1973)), the Pareto (Proschan (1963)), and tre exponential
power gistribution (Smith and Bain (1975)). In lignht of the fact that It

1s often difficult to distinguish petween the candidate distributions

o4




(cf. Bain and Englehardt (1980), Siswadi and (uesenberry (1982), kent and

Quesenberry (1982)) the investigator may very weil choose the incorrect
distribution. 1f the wrong model is chosen, then wa Know the parametric

maximum 1ikelihood method will lead to asymptotically biased resuits and

i

will pernaps be quite 1nappropriate. This problem of misspecification

bias is pernaps the largest concern 1n using this method.
Recently, Moeschoerger and Klein (1985) nave describea a method for

improving the prodguct—1imit estimator’s pertormance when the data are

censored at some fixed time point. Tne approach invoived estimating the
survival function beyona the last death by an appropriately chosen
parametric function. 1ln this paper we present an extension of this method
to randomiy censored data. TThe proposed estimator treats the uncensored
observations nonparametricalily and uses a parametric model only for the
censared observations. This new estimator retains most of the —
distribution-free properties of Kapian—-Meier and, yet, é1'\ows one to
estimate the tunction with reasonable accuracy in the tails. in the next
section the motivation and construction of the proposed estimator is
discussed. In Section 3 properties of the estimator, when the correct
parametric model is chosen, are presented. Results of a Monte Carlo
robustness study which compares the proposed estimator with the
hapian-Meter approach, a smoothed Kaplan—-Meter approach, and the maximum
likelihooa approach are presented in Sectfon 4. Finally, an exampie of
estimating the survival distribution of transplant patients enrolled in
The Uhio State University Bone Marrow Transpiant Program 1s discussed in

Section 5.




el

2. CONSTRUCTION OF THE ESTIMATOR

For the jth individual under observation or on test, let XJ denote
the potential time to occurrence of the event of interest and let YJ
denote the potential time to censoring, J = 1,..., n. 1ln this discussion
we shall make the common assumption that XJ' YJ are indepenagent with
survival functions F(-) and G(+). respectively. We observe T, -
minimum (XJ,YJ) and JJ = 1 if Xj < YJ (a death) and Gj =0 if xj > Yj
(a censored observation). Our goal is to estimate F(x) = P [X > x].

Suppose, that basead on a preliminary graphical analysis of the data
(cf. Elanat-Johnson and Johnson (1980), Nelison (1882)) or based on a
tneoretical model of tne disease process, a piausibie model for F(x)
is selected to be S(x|8). where 8 is a vector of unknown parameters.
Let é be a consistent estimator of @ based on the censored

samplie (TJ.G ), § = 1,...n.

J
The proposed estimator is constructed by analogy to the compiete data

problem wnere a natural estimator of F(x) is the proportion of

(X ,YJ) pairs with XJ > x. In the censored data problem we observe

J
points along the 1ine X =Y = T along with a ray of possibile vaiues of tre

unobservaple coorainate (see Figure 1). For those pairs (TJ, JJ)
with TJ > x (rays a and b in Figure 1) we are sure that the
corresponding xJ is greater than xX. For pairs (TJ. 61) with Tj <x

and §, = 1 (ray c) in Figure 1 we are positive that xJ is less than or

J
equal to x. When TJ»g x and 6j = 0 (ray d in Figure 1) we can not

determine with certainty if the true unobtservable XJ 18 greater than
x or not. In this case an estimate of the cnhance of the true XJ being
greater than x, in light of the ooservabile information (TJ, 6J). is

P(xJ>><|TJ = tj. JJ-O) = P(XJ>X|XJ>Tj' YJ=TJ) which,




using the assumed parametric model S(-|8) for F, is

S(XIQ)/S(TJIQ). This suggests the following estimator:

- n -
Fix) = ¢ ¢, (x|S(-]8))/n (1)
=1
&2
14f T.>x, 6§, =0or 1
A J J
he S(- = L 8. =
where ¢J(xl (-18)) 0 1{ 'I‘J. < x‘ GJ 1 (2)
S (2] i . = 0
(xl_)/S(Tj(Q) if Tj < x 6)

3. PROPERTIES OF THE ESTIMATOR WHEN THE MODEL IS CORRECT

In this section we assume, up to the unknown parameter 8, that
S(x) = F(x) for all x. Before deriving properties of F (x), in
this case, we present an alternate expression for F(x). Let x(A) =

denote the indicator function of the event A and define

- n - n

Qn(x) =j§] 1(Tj>x)/n and Qon(x) =j£1 z(Tj < x,6j = 0)/n.
Then one can show that

Fx = q,(x) + /% s(x18) d g (u). (3)

This representation allows us to prove the following theorem (proof in the

Appendix).




Tnesorem 1. Under the rancom censoring model with xi, Y1 inaependent
'I and S(x|8) = F(x). é(x) - F(x) uniformly in X with probability
one f é - 8 with probability one.
Tre representation (A.4) in the Appendix aliows us to prove, by

arguments very cicsely related to those in Breslow and Crowley (1974), the

foliowing weak convergence result.

Theorem 2. Assume the independent random censoring model with
S(x(8) = P(x). If Jn é is a consistent estimator of @

which converges in distribution to a norma’t random variable then
Jn (ﬁ(x) - F(x)) converges weakly to a Gaussian process with
mean O,

While the proot (which we outline 1in the Appendix) of the apove resuit
is straight-tforward, evaiuation of the limiting covariance is difficult.
especlally for estimators of § obtained by iterative techniques, since
this covariance involves the 1imiting covariance of
(n"%(q (x)-0(x)). n!’%(8-8)) and
(01/2(6°n(t)-00(t)). nl/a(;-O)). However in some gpecial
cases this limiting covarijance can pe obtained. O(ne such special case is
given below.

Corollary 1. 1f x1 and Y1 are indepenagent exponential random
variables with hazard rates A, B respectively, and S(X|é,

= exp(-x/8) in (1) and ; = zTi/d where d is the observed
number of deaths (; is the maximum likelihood estimator of

8=1/2), then




B A

Zn(X) = /n(F(x) -exp(-x/8)) - Gaussian process with mean O

(22%x%+2x-2(1-exp(-2x) )% )exp(-24x) if A = 8

and V(Z(x)) =

[%1exp-(l+6)x)—exp(—2&x)) (4)
(2 - 8)

+ A(A+B)(Bzxa-(l-exp(—ﬁx))zlexp(-ZAx;] if %8
2
B

The details of the proof of this corollary may also be found in the
Appendix.

From Kaplan and Meier (1958) we note that in the exponential case the
asymptotic variance of the product limit estimator is
Aexp(-22x) (exp((A+8)x)-1)/(A+8) (5)
which is always greater than (4). Figure 2 shows a plot of the asymptotic
relative efficiency ((5)/(4)) as a function of the censoring fraction
p=68/{(2 + B) for =1, 0 < p < .5 at the 10th, 50th and 90th
percentile of the survival distribution. Note from this figure that the
relative efficiency of our proposed estihator improves with increased
censoring and increasing time. While this result is true for the
exponential case our Monte Carlo study presented in the next section seems

to indicate it is true for the Weibull case as well.

4. MONTE CARLO ROBUSTNESS STUOY
To study the performances of our estimator when the incorrect
parametric form is chosen for S, a Monte Carlo study was performed. The

0,

study consisted of simulating 1,000 samples of size 25 or 50 with 10%, 30%




P

or 50% censoring from the following distributions: (In each case we Tixed

the maan life at 1 to make comparisons easier.) ‘

1. E: Exponential;

2. W(a): Weibull with S(t) = exp(-8t%);

3. G(a): Gamma with probability density function

f(t) = a®t* Lexp(-pt)/r(8):
4. LN(s): Log normal with second moment equal to the secona moment
of a Weibull (a.B):

5. N(o): Normal with mean 1 and standard deviation o; ‘

6. EP(B8): Exponential power distribution (Smith & éain (1975)) with
S(t) = exp(i-ep((t/a)®?))

7. GOM (7): Gomertz with S(t) = exp'[B(l-exp(rt))/r]. 8. 7. t > o;

8. P(a): Pareto with S(t) = [8/(8+t))%;

9. BT(p): A bathtub shaped hazara distribution (Glaser (1980)) which is a
mixcture of an exponential with probability (i-p) ana a gamma (3,R)
with probability p; ana

10. LL (B): Log logistic with S(t) = (1+rt5)'1, B. v >8 o.

Censoring distributions were the exponential for all distributions. 1n

addition, proportional hazards censoring was used for the W(a) and

EP(8). The distributions selected contain a variety of shapes for the

hazard rate; decreasing hazard rates for the W(a), a < 1, G(a),

a<l, P(a); constant hazard rates for E; increasing hazard rates for

the W(a), a > 1, G(a)}, « >1, EP(B). B8 >1: and U shaped hazard

rates for the BT(p), EP(B). B < 1.

Table 1 summarizes the results of the study by reporting the observed

ratio of the mean squared error of tne product-limit estimator to our

suggested estimator based on either the exponential or Weibull
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distribution choice tor 3. For both modeis. paramécer's were estimated by
the method of maximum Jikelinood. 1n this table a value dareater than 1
mplles that the product-iimit estIimator had a larder wean sguared error.

Several conciusions can be drawn trom the study. First, tne
estunator, basea on S toilowing a Welbuii distribution. always has MSF
1ess thar or equal to that of the oroduct-Timit estimator. A sinn tar
result held tirue tor the bias although these values ars rnot showd .  [hese
aitrerences seem tO DECOME more pronounced as t 1ncreases.  Tne
pertrormance ot the est imator based on 3 fc’>i lowing an exponentia |
gistribution 1S NOt as clear-cut. 1t works better tor those distributions
wrthy & decreasing or U shabed hazard rate. but perrtorms poorar Tor
1NCreas iNg nazard rate distributions especlal ty at large t. our
CECOMEN At 1ON i Light ot thive Study 12 1oy tle The Weatar o hoace 1o g
WENY LI¥ere 1S NO OV I0US reAa~an TO ChOose aNOt e st 1wl 1ay

Seconvily, in all cases where our estimator had a smaller mean sauaredg

error 1t a1s0 had a smaller varitance. This suggests that a conservat v

1t

estimator ot the varilance of F(t) is the estimated variance of the
oroduct imit estimator.

{h an attempt to assess tow auch Ot the success o1 the nroposed
estimator may be due to smoothing. we compared the various estimators with
A SIMDIe HMmoothing OT 4 Kaplan-Meiter by Cconnect ing Lhe ardpoint ot the
SUeDE a0 Tt haptan-Merer estinator.  Figures i Laeoughs Coniot ree i 4l e
Mol T G the Sinooth Kap tan-Meter, e oot 1a ) mepOmum e Lihood . Wetbu |
A e ke oo, exponentlal Scores, and Weinul |l scores est mators ot
AUfvaval with S0 percent censoring versus the MES ab  the unses ol hed
Kaptan -Meter estimator tor various tynpical disteibuatvon., For [samRie 512
N=50, and tor BU percent censoring . Az O Coily e Lhw mprovennent . ot

the Weibul il scores estimator Aappedns Lo e SOMethiltul 1h e <CesSs Ot Just

SO0 hanQg




As a measure of the overall performance of an estimator, w considered

an estimator of the integrated mean squared error defined as
IMSE (F) = £ (/ (F(x) - F(x))? dx),
0

where ?(x) is the true survival function. We estimate the quantity by

. 1000 x
ETMSE (F) = £ [
j=1 o

.95 - _ 2
(Fj(x) - F(x))~ dx/1000

where F(xp) = p and éj(x) is the estimator of survival on the

Jth simulation. The ratio of this quantity for the Kaplan-Meier

est imator o that of e ot the other proposed =pacific estimatror-
(sucothed Kaplarn-Meior, e<wonential MLE, Weibul ) MLE, exnonential scores,
and Weibull scores) is reported in parentheses in the legend of each of
the Figures 3-7. A value greater than one implies that the estimator
under consideration performs better, on the whole, than the Kaplan-Meier
estimator. These ratios can also be used to make other comparisons
betweén the various estimastors. For example, we note that the Weibull MLE
and Weibull scores methods are consistently better than the Kaplan-Meier
and smoothed Kaplan-Meier, although rthere is no clear winner between the
Weibull MLE and Weibul! =cores method when the underlying survival
distribution i3 rot Weiball. Also, it can be seer. that the axponent ial
ascores method is consistent by bettar than the exponential MLE, however,
neither of these mettexis 1+ onsistently better than Kaplan—-Meier or its

smoothed counterpart




h We illustrate the estimator using the times to death, post—transpiant

of 42 patients enrolled 1n The Ohio State Umiversity Bone Marrow

Transpiant Program. The cata represents three years OT patient accruai at
the enda of this Phase 1l trial. Censoring arises due to random entry into
the study. The data is in Table 2. There were i3 deaths so that 69% of
the patients were still alive at study's end. Tne estimate of the
exponentfal parameter was A = 9.38x10°%. The estimate of the

Weibull paramecerslwere ; = 0033, ; = ,789% which

suggests a rapidly decreasing hazard rate. This is to be expected since
graftt versus host disease and other complications tend to kill patients
eariy, if at ali.

Figure B is a piot of the Kapian—-Meier estimator and the new estimator
based on both a Weibull and an exponential croice of S. Notice that altl
three estimators agree until the censorea ohservations begin to appear.
For tne newily proposed est'lmators the jump sizes at each adeath is l/n

while the haplan—Meler estimator has random Jjump sizes Increasing with

time.
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Appendix - Proof of Theorem 1

First note that 6n(x)*Q(x)=F(x)H(x) uniformly

in x with probability one (w.p.1)
Qon(x)~Q(x) =f§ F(u)(-dH(u)) uniformly
in x w.p.1; and

S(x|9) . F(x) almost surely (a.s.).

S(ul8) F(u)

Also note that F(x) = Q(x) + fg F(x) on(u)-

ﬁ(u)
Let ¥, (x) = [Q (x) - Q)]
Yon(X) = [Q (%) - Q (x)],
S(x|8) F(x)
and wn(x.u) = ——— - ~
S(u(8) F(u)

[t follows that
F(x)-F(x) = Y, (x) « [ W (x,u)dQ,(u)

+f§ F(x) dv, (u)
F(u)

X
+ fo wn(x.u)dYZn(u).

Since F(x) - F(x) is a continuous function of Yia(x). Y
and Wn(x,u) in the sup norm and each of these processes converge to 0

uniformly, the uniform consistency of F(x) follows.

2n

(A.1)

(A.2)

(A.3)

(A.4)

(x),




line of the Proof of Theorem 2:
From A.4 it follows that

X
- \ln(f;'\(x)-f?(x))=wlnY1 n(X)+ 0\Ian(x,u)dQO(u)+\lnY2n(x)
X X

- I?-'(x)J‘0 VnY 5, (u )d('-F-'1 (u))+JoVan(x,u)dY2n(u) (A.5)

=Ap(X)+B,(x)+Cp,(x)-D(x)+R,(x), say. Expanding W,(x,u) as a function of 6\ 4
in a Taylor Series about 0 yields
Vn W (x,u) = Vn ( 6-9)d[so(xle)/So(ule)]/de+op(1). (A.6)

So Vn Wp(x,u) converges to W(x,u), a Gaussian Process in x and u. Also

VnY4,(x), VnY,,(x) converge weakly to a bivariate Gaussian process,
n (Y1(x) . Yo(x)). To prove limiting normality of \In(Fc(x)-?(x)) note that A,

Bp. Cp and D, all converge weakly in the supremum metric to Gaussian

processes A,B,C and D, respectively and R, converges a.s. to 0 in this

metric.

Evaluation of the limiting Variance of Z(x) in the Exponential Case

(needed for Corollary 1)

First note that Vn ( 6—9) converges in distribution to a normal random

variable with mean 0 and variance (X+B)/l3. By A.6 we have %,
v W, (x,u)= Vn ( 8-8) (x-u)exp{-(x-u)/a}/62+o(1) . (A.7)
hence
Cov( W(x,u),W(y.n)=A(A+) (x-u) (y-r) exp{-A(x+y-u-n} . (A.8) !1




Now by A.7

A A
Cov(Vn Y4 (x), ¥n W (y.u)=n (y-ur? exp{-A(y-u)}Cov(Qp(x),8

). (A.9)

To evaluate Cov(an(x),a) we have
Cov(Qy(x),8)=EIQ (X6]-E[ Gp(x)] ER)
=E[ %(T{>x)8}-Q(x) E[ZT;] E[d""]

=E[6IT1>x] Q(x)- n Q(x) E[d"TY(A+B)

n

={(E[TIT{>x+E[XT))-n/(A+B)}-Q)ED ]
2

=(x+1/(A+B)+(n-1)/(A+B)- n/(A+B))-Q(x)E[d™ ]
=x Q(x)E[d"1] (A.10)
From Mendenhall and Lehman(1960) we note that
E[d" 1)~ (n-2)n[(n-1)A /(A+B)]}. (A.11)

Combining A.8, A.10 and A.11 and taking the limit as n tends to infinity
we obtain

n Cov(Y(x), W(y,u)) = A (A+) (y-u) x exp{-[ (A+8) x+A(y-u)]} . (A.12)
A similar argument is used to show that

n Cov(Yy(x), W(y,u))=
A8 (y-u)exp{-X(y-u) H{-xexp{-A+B)x}+(1-exp{-(A+B) x})/(A+B)}.  (A.13)

Routine calculations yield the following (for x < y):

n Cov(Y¢(x),Y1(y)) = exp{ -(A+B)y}- exp{-(A+B) (x+y)}, (A.14)




n Cov(Yo(x),Yo(y)) = B(A+B exp{-(A+B)y}-A exp{-(A+B)x}

-B exp{-(A+B) (x+y)}]/ (A+8) %,

and

© nCov(Y{(x),Yo(y)) = -B[ - exp{-(A+B)x} + exp{-(A+B) (x+y)}]/ (1+8).

From the representation A.S it follows that
V(Z(x)) = V(A(x))+V(B(x))+V(C(x))+V(D(x))+2Cov(A(x),B(x))
+2Cov(A(x),C(x)) -2Cov(A(x),D(x))+2(Cov(B(x),C(x))
-2Cov(B(x),D(x))-2Cov(C(x),D(x)).
From A.14 we have
V(A(x)) =exp{-(A+)x}- exp{-2(A+B)x};
from A.8

Xy
vem)=2 [ | covwien.wieyagnaagy)

=A(A+B) exp{-2Ax} [exp{-Bx}+Bx-1]%/p2;
from A.15
V(C(x))=B[A+(B-1) exp{- (A+B)x}-B exp{-2(A+B)x}}/ (1+8) ;
from A.15

X y
v(D(x))=2 | . | 5 COVIY (). Ya(y)A2 exp(-Afersxy} dr dy
=2 Br2exp(-2Ax}[- (A+BP(2BA(A-B)+exp{2Ax}/(20)
+(B2+12)exp{x(A-B)}( AB(A-B))- (A+B)exp{Ax}/(BA)
+ (\+B)exp{-BxY (BA)-exp{-2BxM/(2B)/(A+B)2, it B= A

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

=exp{-2Ax}[exp{2Ax}/4+Ax-exp({Ax}+exp{-Ax}-exp{-2Ax}/4], if B = A;




from A.12

X
Cov(A(X).B(x))=], Cov(¥ 1 (x)Wex.u) dQg(u)

=(A+B)Axexp{-(21+B)x}[(Bx-1)+exp{- Bx}}/8; (A.22) =
from A.16
Cov(A(x),C(x))=-B[-@XP(-(A+B)x}sexp{-2(h+B)x})/ (1+8) ; (A.23)
from A.16
X
Cov(A(x),D(x))=] 0COV(Y1(x). Y o(u)Aexp(-A¢c-u)}du (A.24)
=-Bexp{-(A+P)x}/(A-+B)+exp{-(2A+B)x}-Aexp{-2(A+B)x}/ (A+B);
from A.13
X
Cov(B(x),C(x))=f oCov(Y2(x),W(x.u))d(f)o(u) (A.25) —
=Aexp (-Xx) [Bx-1+exp{- x}] {~xexp{ (A+B)x}+(1-exp{- (A+B)x})/ (A+B) };
from A.13

Xy
Cov(B(x).D()= [ ] Covwixy).Ya(pnexpi-Abeylexel- (u+Biridey

XYy
+ J, J ,Coviwixn). Yy expi-aeenlexpi- (A+B)rlcirdy

=exp(-2 (A+B)x} [ AZ(Bx+1)/B2+A2/(8 (A+B))]

+exp{- (A+B)x}W (A+B))+exp{-Ax} {Bx-1) (A/(A+f))

+exp{-( 2L+Bx}[ (Bx-1) A%/(B (A+B))+A2x2-222/32-A/p]
-exp{-2Ax} (Bx-1) [A2/B2+ A2/(B (A+B))+ (M(A+P)]; (A.26)




and from A.15
X

Cov(C(x),o(x))JOCov(vz(x),vz(u))xexp{-x(xu)}du

B+ B2 NeXD{AXY (et B) B2+ A2 exp{-(h+B)x}/ (M B)2
-Bexp{-(22+B)x}/(A+B) +Blexp{-2(X+B)}/(7.+B)2. (A.27)
Substituting A.18-A.27 into A.17 we obtain (4) after some very tedious

simplifications.
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Table 2. Times to death (in days post-transplant) of patients in OSU Bone
Marrow Transplant Program (+ denotes still alive).

2, 27, 32+. 43+, 50, 55+, 62, 82+, 102+, 103+, 122, 145+, 148, 158, 162,
194+, 250+, 251, 267+, 276, 284+, 292+, 319+, 326+, 346+, 365+, 404+, 417,
418, 423+, 438+, 491, 584+, 595+, 613+, 642+, 649+, 693+, 707+, 746+,
755+, 826+
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Figure 2.

Asymptotic Relative Efficiency (A.R.E.) as a fuaction
of the censoring fraction at the 10th_(0), 50th 4),
and 90th (4) percentile of F(x).
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F . Figure 3.

Relative MSE of Estimators of Survival for the
Weibull Distribution with 50% Censoring, n=50, a=0.5
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Figure 4.
Relative MSE of Estimators of Survival for the
. Exponential Power Distribution with 50X Censoring, n=50, 8=0.5
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Figure 5.

Relative MSE of Estimators of Survival for the
Log Normal Distribution with 50% Censoring, n=50, S=.6096
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Figure 6.

Relative MSE of Estimators of Survival for the
Gompertz Distribution with 50% Censoring, n=50, y=1.0
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Figure 7.

Ralative MSE of Estimators of Survival for the
Log Logistic Distribution with S0Z Censoring, n=50, 8=3.0
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BIVARIATE MODELS WITH A RANDOM ENVIRONMENTAL FACTOR

Sukhoon Lee John P. Klein
Temple University The Ohio State University
Philadelphia, PA USA Columbus, OH USA

1. INTRODUCTION

Consider a two component series system functioning in some environment. A common,
though untestable, assumption is that the two components of the system function
independently. If this assumption is incorrectly made predictions of the system reliability may
be very poor (c.f. Klein and Moeschberger (1984)). Several authors have proposed models for
dependence based on the assumption that the effect of exposure of a system to the environment
is to simultaneously degrade (or improve) all components in the system (Hutchinson(1981),
Bagchi and Samanta(1984), Lindley and Singpurwalla(1984), Oakes(1982), and
Hougaard(1985)). In Section 2 we propose a general model for a system affected by a random
environment and describe its properties. In Section 3 we restrict the model to one where the
environmental effect is modeled by a gamma distribution and study its properties. Finally in
Section 4, we conclude with an example.

2. GENERAL MODEL

We assume that under controlled conditions, as one may encounter in the testing or design

stage of development, the times to failure of the two components, to be linked in a system, are

X, and Y, with survival functions F,, G, respectively. The two components are linked into a
system and are put into operation under operating conditions. Suppose that under such

conditions the effect of the environment is to degrade or improve each component by the same
random amount, Z (with some distribution function H ), which changes the marginal survival

functions of the two components to FOZ and GOZ. A value of Z less than one means that

component reliabilities are simultaneously improved, while a value of Z greater than one
implies a joint degradation. We assume that the two components in a system under fixed
conditions (i.e. given Z) function independently. The resulting joint survival function of the

two components'’ lifetimes, (X,Y) in the operating environment is F(x,y)=E ( Foz(x)Goz(y)).
Denoting the cummulative hazard functions of X Yo by Qyo() and Qyo(-), we have

F(x,y) = E{exp{-(Qxo(*)+Qyo)ZH - 2.1




Now we will discuss the properties of the model in terms of it's depgndence structure, and
reliability.
Property 1. The random variables X, Y of the lifetimes of the two components in a
system under the operating environment are totally positive of order 2 dependent.
(See Barlow and Proschan (1981) for a discussion of TP2 dependence.)

proof) Let f(x) and g (y) be the density function of X, and Y, respectively and f(x,y) be
the joint density funtion of (X,Y). Define q, ,(x) = fo(x) / Fo(x). Then

x~E(Z2F,Z (06,2 ) 0)8oM} =aoyo)22FoHx)G,Hy)H(). So

foxp.y D09 = | JaxoDayotr1) axotxiayor2) 82 E PG -
usv FV(x9)G,Y(y2)dH(u)dH(v)

+ J .[qxo(xl)qyo(yl) Axo(X2)2yo(¥2) u? szou(xl)Go"(yl) :
v>u FY(x9)GgY(y,)dH(u)dH(v)

=I j Qxo(X] )Qyo(y 1) qu(XZ)Qyo(YZ) u2 V2Fou(x 1 )Gou(y 1)
us>v Fy¥(x2)GgY(y2)dH(u)dH(v)

+ J‘ J.qxo(x 1 )qyo(y 1) QxQ(XZ)qyo(YZ) u2 VZFQV(X 1 )Gov(y 1)
usv Fo¥(x9)Go Y (y2)dH(u)dH(v).

In the same manner, the other product f(x1,y7) - f(x9,y) also can be written as integrals over

the region u>v and f(x,y) - f(x9,y9) - f(x1,y9) - f(x9,y1) can be written as

142 V21 40012 axoxa) Fo¥(x1) Fo¥(x9) - axo(x1) Gxg)Fo"(x1) Fol(xp)}

>V [ ayo(yD) Gyo2) Gol (1) Go(2)- Gyo(¥1) Gyoy2)Go (1) GoP(y)] dH()AH(Y)
The blanketed terms in the integrand are always nonnegative over the region u>v since
Fov(x) / Fou(x) =exp [ - (v - u) Q,(x) ] is increasing in x for any F,. Hence

f(x1.y1) - f(x2,y9) - f(x1,y2) - f(x,y1) 2 0 for all x{<x9, yj < y9, which leads to TP2
dependence. Q.E.D.

2

4




Since TP2 dependence implies that X is stochastically increasing in Y we obtain the
following property.
Property 2. Under the same setting as in Property 1, the conditional hazard rates q(x | Y=y)

and q(x |Y > y) are decreasing in y.

The property implies that the longer one component functions, the more reliable the other
component in the system becomes.

From a different point of view we derive an inequality in terms of the conditional hazard
rates which reflects the positive dependence of the model.
Property 3. Under the same setting as in Property 1, the model satisfies

qx Y =y)>q(x]| Y >y).
Proof) Let G (y) be the marginal survival function of y in the system exposed to the

operating environment. Then F(x| Y=y)=P(X>x|Y =y)
= (3F(x, y) AyY (4G (yWdy) = EZFZ(x)GoZ(y)) EZ-GoZ(y)).
Also F(x |Y > y) = P(X > x| Y > y) = E(FoZ(x)'GoZ(y)V E(G,Z(y)) .

Hence, we obtain the following inequality,

qx Y =y) E( Z2F 2(x)GL(y)) E( F,Z(x) G, 2(y))
= > 1, (2.2)
q(x Y > ) E2(ZF,2(x)-GyL(y))

since q(x |Y=y) = d [- logF(x|Y=y)] / ox
= E@Z2F(L 1 (x)-Gylly) fo(x)) | E( ZF 4 2(x) G £(¥))
= Gy o(WE@Z2FpZ(x)GoZ(y)) | E( ZFyZ(x)-GyZ(y)), and

q(xly>y) = Qo(E( ZFoHx)Go2(y)) / E( FoZ(x)GoZ(y).
The inequality in (2.2) is obtained by Cauchy -Schwarz inequality and equality holds if and
only if the random variable Z is constant. Q.E.D.

We note that this inequality should be contrasted with the notion of the quasi
independence, which is defined by q(x |Y = y) = q(x |Y > y). This is the necessary and
sufficient condition that the marginal distributions under the dependent model can be recovered

.




from the minimum of X, Y and the knowledge of which component caused the system to fail.
In that case there exists a set of independent random variables which yields the same minimum
and indicater of system failure as the dependent system. Futhermore these equivalent
independent random variables have the same marginals as the dependent system (See Basu and
Klein (1982)).

Up to now several properties have been explored in terms of the dependence structure =
induced by a random environment. Next we investigate the effects of the random environment
on system reliability by comparing the reliability function with and without the random
environmental effect. Conventional reliabilty theory commonly uses the knowledge of the
component lifetimes and an assumption of independent component lifetimes in order to
compute the system life distribution. In other words an investigator modeling system life,
based on component information, may predict the reliability of the system, in our setting, with
knowledge of F(x) and G, (y) only by R (t) = F(t):G(t). The following theorem indicates
how the two reliabilities are different in a series system.

Property 4. Suppose a two component system is serial, i.e., the system failsas soon as any

one of the two components fails. Let R¢(t) and R ((t) denote the system reliabili-
ties for the cases of a random environment and of a fixed environment.
i) f E(Z)< 1 then Ry(t) > R (t) for all t
ii) IFE(Z) > 1 and P(Z < 1) = 0 then Ry(t) < Ry4(t) for all .
iii) If E(Z) >1 and P(Z > 1) > 0 then there exists at" such that
Ry(t) <Ry(®) forall t < t* and Ry(t) > Ryg(t) for all t > t™

Statement (iii) implies that even if the average operating environment is more severe than the
controlled one, but there is a chance of better environment perhaps due to highly cautious
maintenarnce, careful users, or effective usage, the system under a random environment
becomes more reliable beyond a certain time.

Proof) The ratio of reliabilities for variable to fixed environment R (D/R4(1) is
E{exp(-Qp(12)} /exp{-Qo()}  where Qq(t) =Qy(1+Qya(D).
In the case of E(Z) < 1, E{exp(-Qy()Z) }> exp{-Q,(t)'E(Z)} by Jensen's inequality so i)
follows immediately. Note that the equality holds if and only if Z=1 with probability 1.The
statement (ii) follows by noting that E{exp(-Q,(1)Z)} = I exp(-Q,(1z)dH(z) < exp(-Qq()z)
JaH(2) = exp{-Qqy (1)} -




To prove i), let 1(t) = E{exp(-Q,(N2)} / exp{-Q,(»)}.

Then r'(t)=q,(DE{exp(-Qu()Z) }exp{-Q(t) }(1-s(1))

where s(t) = E{Zexp(-Q,(t)Z)}/ E{exp(-Q(1)Z)} and q,(t)=dQ,(t)/dt.

Noting that s(0)=E(Z) since Q(0) = 0, E(Z)>1 implies that r'(0) < 0. Since r(t) is decreasing at

t = 0 and r(0) = 1 this implies that r(t) < 1 for t in a neighborhood of t=0. To complete the
proof it suffices to show that r(t) is increasing beyond a certain point, which is true if r'(t) is
positive beyond that point. We claim s(t) is decreasing in tands(t) < 1 for large t under the
given condition.Let us express s(t) as

E{Z exp(-Q,()Z)}
s(t)= =I'zp(le>t)dz
E{exp(-Q,(1)2)}
exp(-Qq(h2)dH(2)
where p(z|T>t) dz = and  c(Qu(®) =] exp(-Qu(V)z)dH(2).

c(Qo(t)
Noting that p(zIT>t) is a density function, s(t) can be expressed in terms of the conditional
expection E(Z |T > t). Looking at the density p(z/T>t) we see that

p(EIT>tH) p(zT>t)) = c(Qp(t2)) e(Qp(ty)) exp{( Qo(ty) - Qo(t2) )z} for ty <ty

is decreasing in z. Then it is an immediate consequence of the following lemma, due to
Lehmann that E(Z| T > t) is decreasing in t

Lemma (Lehmann(1959),pg74) Let pg(x) be a family of densities on the real line with
monotone likelihood ratio in x. If y(x) is nondecreasing function of x, then Eg(y(x)) is a

nondecreasing function of 6.

Let 6 = 1/t. Denote pg(z) = P(z[T>t). Then pg(z) has monotone likelihood ratio in z. So E(Z)

is nondecreasing in 0, which implies that E(Z|T>t) is decreasing in t. Now it remains to be

shown that s(t) < 1 for some t > 0. Let p(z)=(z-1)exp(-Q(t)-z) and note that p(0) = -1 and p(z)

has maximum [Qo(t){exp(Qo(t)+1)}]'l at z,=( 1+Qo(t))-Qo'1(t) and p(z) is increasing for z <

z,, and decreasing z > z,. Suppose P(Z < 1) = € > 0.For any 0 < d < g, there exists a closed 1

L
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interval [u,v] contained in (0, 1) such that A(u,v) = H(v}- H(u) 2 8. Then E(Zexp(-Qy(1)2)) -
E(exp(-Q,(1)2))
= %p(Z)dH(Z) + [ p(@)dH(z) < [p(@)dH(2) +] Qo(B-exp(1+Qu(t)I A1, = )

SP(V)‘A(U,V)+[Q0(0‘€XP(1+Qo(t))]'I'A( 1,20)<(v-1) exp(- Qq (1)) 8+[ Qq(t)exp(1+Qq ()] L.

Since the last term is negative if and only if (1-v) 8> (e Q1) exp{(1-v)Qy(1)}] there exists a t*

such that E(Zexp(-Q,(t)Z)) - E(exp(-Qo(1)Z)) < 0, that is, s(t*) < 1. Q.E.D.

This property implies that methods which are based only on components' information
(assuming independence) over estimate the reliability at an earlier stage ignoring potential
failures from a harsh environment which may be encountered in the beginning stage under the
operating condition, while under estimating the possible gains in reliability at later stage from a
better environment which meets requirement of each system's susceptibility.

The proof of the property yielded an interesting result about the conditional distribution
H( ) of a random environmental factor.
Property 5. The mean and variance of a random environmental factor Z among system which

survive toa given time t, E(Z | T > t) and V(Z| T > t) are decreasing in t.

This property indicates that average environmental factor of the surviving systems declines
with time since the systems under harsher environments tend to fail first. Also it is noted that
the variability of environmental factor of the surviving systems is reduced with time.

We conclude this section by mentioning an curious phenomenon of the hazard rate. In the
series system problem the life system distribution after incorporating a random environmental

factor has hazard rate q (t) = q,(t) E(Zexp(-Qy(t)2)) / E(exp(-Q4(t)Z)). However
E(Zexp(-Q,(1)2)) / E(exp(-Q,()Z)) has been shown to be decreasing in t. Thus the lifetime

distribution can often have a decreasing hazard rate which the variable environment may cause
while the component hazard rates are not decreasing. One plausible explanation is that the
population is subject to an early heavy selection of systems under most severe environments.
This should be contrasted to reliability of system operating in a fixed environment where the
systems may have a variety of shapes for the hazard rates.




W VIOR TAL FA R —
In this section, we assume that the random environmental factor Z follows a gamma

distribution with density function is h(z) = {I' (@)} 1p%xp(-z/B)z%~1, > 0 B > 0. This
distribution is chosen because it is analytically tractable, and because it is flexible in that it
allows a variety of shapes including the exponential and bell-shaped density. The joint survival

function for (X, Y) is F(x,y)= B%/ {B+on(x)+Qyo(y)}°‘ . G.1)
and the marginal survival functions are Fj(x) = B/ { B+Q,o(x)}1%,

G1(y) = B* {B+Qyo1*.
QOakes (1982) proposed a similar model based on an extension of Clayton's (1978) model
for bivariate lifetables. His model is derived by assuming that given w, X and Y are

independent random variables with survival functions {<:xp(-l-’okl'9(x)+l)}W and
{cxp(-Gokl'e(y)+l)}w, respectively. Then assuming w has a gamma distribution with o =
1/(6-1) and B = 1 the joint survival function is F(x, y) =[ Fokl‘e(x) + Gékl'e(y) - 1]1 /(1-0)
where F.), and Gy are the marginal survivals and 6 > 1.

For the Oakes' model the marginals under a fixed environment (i. e. given w) depend on the

environmental parameter 0, while in our model they are free of the dependence measure o. The
reverse situation holds under the random environment.

While the two joint survival functions appear quite different the basic marginal free
structure is the same. That is both models have the same nonpafamctric dependence structure,
the copula introduced by Sklar (1959) and studied by Schweizer and Wolfe (1981). Here the

copulais C(u,v) = uw /@4 v 101 1@ g=1/0-1).
We list some properties of the gamma model we have obtained through the copula.

1) The probability of concordance is (ot+1)/(2a+1).

2) Since the copula C(u, v) depends only on a, only the shape parameter a affects dependence
structure which is induced by the environment.

3) Since the copula C(u,v) is decreasing in o, and two variables are independent if and only if

their copula is u'v, the larger the shape parameter « is, the less the dependence is induced.




4) As o goes to 0 the copula converges to min(u,v) which is the copula of maximal positive

association.

S5) If we consider two environments characterized by gamma distributions ¢ < o then X, Y

under a is more positively associated than X,Y under c.

We conclude this section with the following property of our model.
Property 6. The random environmental factor for those systems for which component A has
functioned more than x time units and component B has functioned y time units

also follows a gamma distribution with same shape parameter o and scale

parameter Q, ,(x) + Qyo(y) + 3. While for the popuiation of the systems whose

components failed at time X=x, Y=y the environmental factor follows a gamma

distribution with shape parameter a+2 and scale parameter on(x)+Qyo(y)+B.

Property 6 indicates that the mean of the environmental factor for the population of systems
whose components are functioning at time t is a decreasing function of t. Another point to be
noted from this property is that the density of the environmental factor for the population of the

systems whose components' lifetimes have X > x, Y > y has the shape paramater «a, which is
identical to that in the unconditional density of Z. It can be interpreted that the dependence
structure between the components of all the functioning system beyond a certain time t has the
same as the dependence structure between components of a system operating at time 0.

4_EXAMPLES

As examples we consider the case when both components have a Weibull form parameters
My, A and (My, Ay), respectively. That is, Fg(x) = exp(- llxnl). The Weibull

distribution, which may have increasing (1 > 1), decreasing (| < 1) or constant failure rate (n
= 1) has been shown experimentally to provide a reasonable fit to many different types of
survival data. (See Bain (1978)). The resulting joint reliability of the two components'

lifetimes, (X,Y) in the operating environment is F(x,y) = E[exp(-Z(J\lan A,Zyn2 ). (4.))




The model described above for a general distribution of the environmental stress has a
particular dependence structure which we summarize in the following property.

Property 7. Let (X,Y) follow the model (4.1) where Z is a positive random variable

r s
with finite (— + ——)‘h inverse moment. Then

N M

My -smy -} ;sMy)
E(XTYS) =2, A {1+ mmy) I'(l+ smy) E(Z ) (4.1)

When the appropriate moments exist, we have

(A) EX)=EXpEZ ),
-1m -lim )
(B) V(X)=E(XgD) Var @ D+E@Z )2 Var(Xg),
-imp -y
(C) Cov (X,Y) = E(Xg) E(Yq) Cov(Z ,Z ) which is strictly positive.

If N =Ny =N then the correlation between (X,Y) is
r'(1+ 1m)2 Var(z-1/M)

= (4.2)
P Var(Z 1My r(1+2m)+ (T(1+2m) - C(1+1/m)2) EZ-1/My2

In this case the correlation is bounded above by l"(l«l-l/n)2 / T(1+2/m). Figure 1 shows the
maximal correlation as a function of 1M for1 € (0, 10). Note that this maximal correlation is an

increasing function of . )

Exact expressions for the quantities of interest can be computed when a particular model is
assumed for the distribution of Z. We shall consider the gamma and uniform models. For the
gamma model for Z, the joint survival function is

n n
F(xy)= B% / [B+Ayx 1+ Ay %a (4.3)

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are
univariate Burr distributions with

-1m
E(X) = (A/B) 1L(1+1/n1)r(a- 1my) Mo, if &> 1m,




e~

-2y I‘(1+2/n1)¥;(a-2/n1) I“(l+l/nl)r(a-1/n1),) .
Var(X) = (A/B) { - J°}if o> 2m,

(o) (o)
with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is Cov(X,Y)

‘ 1My -Umy Te-1my-1my)  T(a-1my) T(a-1my)

= O'I/B) 0\,2/[3) ¥ I‘(1+1/n1) F(1+1/n2)
(o) (o)

fora>1my + 1/m,. For the gamma mode], the reliability function for a bivariate series

system is given by

n N2
Rg(t) = (1+(A /Bt L OBt = )¢, (4.4)

and for a parallel system by

n n n n
Rp(®) = (1+( Xy /B)t 1+(1+(7L2/[5)t 2y (1+( A /Bt 2 A/B)t 2)"‘1 (4.5)

Figure 2 is a plot of the series system reliability for 7&1= 1, 12 =2and M;="Ny=1. The figure
shows the reliablity for & = 1/2, 1, 2, 4, and the independent Weibull model. In all cases, B =

1. For this figure we note that for fixed X, X, 11{, M5, t, the series system reliability is a

decreasing function of the shape parameter a.. Figure 3 is plot of the parallel system reliability

(4.5) for the above parameters. Again, the reliability is a decreasing function of . Also in
both the series and parallel system reliability, the shape of the reliability function is quite
different from that encountered under independence. Additional plots with other parameter
values ,which can be found in Lee(1986) show similar survival curves.

The gamma model is often a reasonable model for the environmental stress as discussed in
the previous section. However, in some cases, such as when the operating environment is
always more severe than the laboratory environment, the support of H may be restricted to
some fixed interval. A possible model for such an environmental stress is the uniform
distribution over [a,b]. For this model, the joint survival function is




n n ny 2
[exp (-b(kllx + lzzy ) -exp(-a(Aix  + Ay )]
F(x,y) = (4.6)

M 2
(b-a)(Ax +Ay )

-1m, My-Hmy (-bHmy .
E(X) =X r(+1my)ny (b -a ) {(ng-D)b-a)] ifng =1,
= log(b/a)/[A(b-a)] if np=1,
-2y Mp-2my (-2,
Var(X) =M1 2 { (1+2Mmp)ny @ -a )
(b-a)
M-/ny)  My-/my)
-Td+imp2n; b SR Y2
3 } if ny =12,
(Mq-1)<(b-a)
= 2/(A2ab) - log(b/ 2)2/[(b-2) A4 ]2 ifny=1,
\o-l log(b/ a) .
=A; - ] ifn =2
I "o o172 ali22" 1
and
M2-M1-M2 M2 -M1-M2
LS RLLY) ninz
I (1+lmp T (1+1/my) uFiub) () -a
Cov(X,Y) = {
Imy 1my MMy -M;-M2) (b-a)
AL A
m-1 -1 mp-1 mp-l
MM M M2 M
nin2 ® -a b -a ).
5 Hfng=1L M= Uny +1mp=1
M=-D(ny-1) (b-a)

IC




12
n-1 m-l ,
2 m ™
_1‘(1+1/n1)F((an-l)ml)[log(b/a) me b - )(g/nl l/m)]
- - -a
1m;  mymg-) (b-a)  (M-1)  (b-a)?
SR V)

if 1M+ 1m;=1

MM -Mi-Ny MMy -Ny -y ni-1 mn;-l
H H ) m & -a ' )log(bla)

=F(l+l/ﬂi) [T]iT]i' (b

N lmi}‘i' (M; My - M; - My)(b-a) M- (b-a)?

ifn; # Lnp=1

1 1 log(bla)?
= . ] ifny=ny=1
(A A9) @)  (b-a)?

For this model, the reliability function for a series system is

m n m k)
R(t) = [exp(-b( llt +Apt %)-exp[-a( At +At )]

4.7
(b-a} At ﬂi Ayt ﬂ§
and for a parallel system is
Rp(t) = [exp(-b(?\.ltnl) -exp(-a lltnl) + [exp(-b Ayt 112) -exp(-a thnz) Rs()
(b-a) kltnl (b-a) thnz (4.8)

Figure 4 shows the reliability for a series system and figure 5 for a parallel system under

the uniform model for various combinations of a and b. Notice that when a = 25,b =75,

|

ol
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which corresponds to an operating environment which is less severe than the test environment,

the system reliability is greater than that expected under independence, while when (a,b) =

(1.25, 1.75) or (1, 2), which corresponds to an environment more severe than the test

environment, the system reliability is smaller. Also when (a,b) contains 1, which corresponds

to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.
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FIGURE 1
UPPER BOUND ON MAXIMAL CORRELATION FOR RANDOM
ENVIORNMENT MODEL.

1.00

88

0.

0.75
i

TION
0.63

S0

0.
g

i

MAXIMAL CDRRELA
0.38

0.25

.

D0.13

K.

P 00

.00 1.00 2.00 3.00 4.00 5.00 6.00 ‘
COMMON WEIBULL SHRPE PARAMETER N

. —



FIGURE ¢
SERIES SYSTEM RELIABILITY UNDER GAMMA MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3
PRRALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE U
SERIES SYSTEM RELIABILITY UNDER UNIF {R.B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B!
FOR THE ENVIRONMENTAL STRESS.
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Summary

We present some techniques for analyzing combined experiments on systems tested under field
conditions and components tested under controled conditions, under an assumed random
enviornmental stress model for series system reliability. Based on this model we discribe the
maximum likelihood estimation of model parameters as well as other estimators based on the scaled
total time on test statistic. The question of when it is advisable to perform diagnostic testing on the
failed systems to determine the failure modality in light of the excess cost of doing so is also
studied. Lastly, a study of several tests for independence based on this model is made.
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1. Introduction

Consider a p - component series system where the failure of any one of the p components
causes the system to fail. A common assumption made in analyzing such systems is that the
potential (unobservable) times to failure of the components are statistically independent. Thus the
assumption is not testable due to the identifiability problem. (See Basu and Klein (1982) for
details). However, Klein and Moeschberger (1984) show that an investigator can be appreciably
misled in modeling competing risks by erroneously assuming independence.

Recently several authors(Hutchinson(1981), Bagchi and Samanta(1984), Lindley and
Singpurwalla(1984), Oakes(1982), Hoggard(1985), and Lee and Klein (1987)) have proposed
models for dependent series systems based on a common random environmental factor which
affects all components in the system under operating conditions. Inference for ali the model
parameters is not possible, based only on field data from the series systems, due to the
identifiability dillema. However, in many situations, one has available additional data on the
individual component reliabilities obtained in the laboratory during the testing and design process.
Incorporating this data with the field data allows us to estimate model parameters and check a
possible assumption of independence. In this paper we consider estimation of the model parameters
for a two component series system based on a common environmental stress model. In section 2
we describe the particular model (Klein and Lee(1987)) on which the inference is made and the
experimental setting. In section 3 maximum likelihood estimators are discussed and in section 4 we
focus on estimating components' hazard rates. In section 5, a graphical estimation procedure is
presented. In section 6 a comparision of the estimators obtained will be made through a small scale
Monte Carlo study. Finally we comment on some tests for independence and present a small study.

2. Model

For simplicity we shall consider only the two component series system. The model for the
system, as fully developed in Lee and Klein (1987) is as follows: Suppose that under ideal
conditions, as encountered in the laboratory, the lifetimes of the two components are X, and Y,
with reliability functions F and G, respectively. The two components are linked into a system
and put into the field. The effect of the operating environment is randomly improve or degrade euach
component by a factor Z with the distribution function H(z). That is, under field conditions the
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conditional reliability of the two components, given Z=z, are F)Z and G,Z, respectively. Note that

a value of Z < 1 implies a simultaneous improvement in component reliability, and Z > 1 implies a
Jjoint degradation. Further, we assume that conditional on Z the components are functioning
independently.

In the sequel we assume that X, and Y, are exponential with hazard rates A, A5 (i.e. F(x) =
exp(-A1x)). This assumption is commonly made in reliability studies (c.f. Mann and Grubbs
(1974), Chao (1981), Miyamura (1982), Boardman and Kendall (1970)). We also assume the
random environmental factor, Z, follows a gamma distribution with density function is h(z) =
{T" (oc)}'1 e exp(-z/B) 2%-1, This distribution is chosen for its analytical tractability and its
flexibility in allowing for a variety of shapes including the exponential and bell shaped density.
With these assumptions the reliability function for the system is
R(t) =Ez { FoZ(® GoXn) = (1+ (A +A)up)y ™ 2.1).

This model has been proposed with a different parameterization by Lindley and Singpurwalla
(1985) and Houggard (1985).

For this model, we note that the system reliability depends only on two parameters 6 =
(A1+A9)/B and a, so that if we had data only from systems on test in the operating environment,
the only identifiable parameters are o and 8. However, in many instances we have extensive data
on the performance of the components under controlled condition so that the whole experiment
consists of three distinct parts.One experiment (EI) is done on the first component, A, under
controlled condition, such as found in the laboratory and another independent experiment (EII) is
performed on the second component, B, under controlled conditions. The third experiment (EIII) is
carried out on the series systems under operating conditions.Sample data from the first two parts
consist of times to failure of each component. The last part consists of the failure times of the
system and an indicator variable which tells us which component causes the system to fail.

Let
Xo,i = Lifetime of the i-th component AinEl,i=1,2, " ,n;
Yo,j = Lifetime of the j-th component B in EIl, j = 1,2, - - ;m;
n = Number of component A's put on the test under controlled conditions;
m = Number of component B's put on the test under controlled conditions;
S6,1=X0o,1+-+Xo,n: and Sg 2=Yg 1+..4Y, m. Based on experiment ETII let
&; = The indicator variable whose value is equal to 1 if the A component failed first and
otherwise equal to 0;
M =3;+8y+ - ' +9 ,the total number of system failures from component A;
T; = Lifetime of the i-th system;




s = Number of the systems put on the test under operating conditions;
A1 = Hazard rate of the component A under controlled conditions;
Ay = Hazard rate of the component B under controlled conditions;
& = The shape parameter of the gamma distribution;
B = The scale parameter of the gamma distribution.

3. Maximum Likelihood Estimators

In this section we consider maximum likelihood estimation based on the three independent
samples described in section 2. The relevant log likelihood is (up to constants)

logL = n'logh; + mrloghy - XS, 1 - A58, 2 + Mloghy +(s - M)logh,

s
+ sloga - slogB - (a + I)E li)g (1 +(A;+Ay) T/ B} . (3.1

Taking derivatives we obtain the following system of four nonlinear equations:
i) n/ll 'So,l +M/ll - S/(K1+7\-2)=0
it) m/lz- S°’2+(S~M)/7\.2- s/ (7\-1+)\.2)=0
s s

iii) —- I log {1 +(A+A9) Ty /B) =0
o k=l

S Ty sp
iv) Z .
k=] 1+ (3.1-1-)\.2) Ty /B (C(+1)(11+7\.2)

=0 . 3.2)
The first two equations are to be solved for A, A, to obtain A, ;. We may obtain &,
Bmle by Solving the last two equations. In other words, the problem of finding the parameter
values maximizing logL consists of the two parts: the first to find the values of A, A, maximizing

logL and the second to find those values of vand 8 = (A +2,) / B maximizing logLy, where

logL| =n'loghy + mloghy - A1Sq 1 - 23S, 2 +1og(sCyp) + MlogA | +(s - M)loghy (3.3)
-slog(A{+A5), and '
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s
logl, =sloga +slogB-(a+1) £ log(1+6 Tp). (3.4)
k=1

It should be noted that the M.L.E's of 2\.1, )vl depend on the samples of the components under

controlled conditions and M, the number of systems which fail due to the failure of component A

only, while the actual system lifetimes are used to estimate o and 6.

Returning to the estimation problem, the M.L.E.'s of 7\.1, )“2 are easily calculated as
x” ={r + (rl2 + 4ror2)1/2) /2ry if ry>0,and {-r - (rl2 + 4ror2)1/2] / 2r5 otherwise. The
other estimator ).,21 is computed as (n - So1*11)/ So25
where ry = So,l'so,2 - 50’12 » Tp=(ng+np) So,l +(s-ny) so,2’ Io=NC Ny,

nc=n+m; andn A =n+M. Since 7&1 and 7\/2 could be estimated based on EI or EII alone a

natural question is " How much are these estimators improved by adding information from the
system experiment, EIII?" Since this question is of independent interest we will discuss this
problem in the next section.

Noting that logL, is a function of o and 6, the two likelihood equations are

dlogl, s s
=—-X log {1+6Ty}=0,and (3.5)
da o k=1
dlogl, s s Ty
=— -(o+1)X ——— =0, (3.6)
29 0 " k=1 1+ 6T

Solving 3.5 for o we obtain Oe=s/ {Zlog{1 +8Ty)). Substituting this value into 3.6 we obtain

the following equation which is to be solved for 6
s/0-£20)[s/f1(®)+ 1 1=0 where f1(8) = L log (1 + 6T}), and 3.7

f2(9)=ZTk /(1+9Tk).




One can show that 8, is in the allowable parameter space if the observation Ty 's satisfies

S
s T T2 -2(Z T2>0. (3.8)
k=1 k=1

In the case that the data does not satisfy the condition (3.8) we would have a M.L.E.of 6 at 6 = ()

which leads to e as a M.L.E. of &. In such a case the reliability for the series system becomes

lim Rt = im (1+QA+ADt/BY® = exp (-1 (Aj+ho) t) (3.9)
Q—>o0 Q—>o0
o/B->u /B>

so that we conclude that the series system has constant hazard rate and it seems reasonable to carry

out the inference procedure accordingly. This condition is satisfied if the sample standard deviation
is larger than the sample mean.

In addition, we note that the estimate of & can be less than one, which implies that the mean
system reliability is infinite. To study the properties of these estimators and a graphical estimator

which will be discribed later, a small scale Monte Carlo study will be presented in section 6.
4. A Note on the Estimation of the Components' Hazard Rates
As discussed in the previous section the M.L.E.'s of A.{, A5, the components' hazard rates

under controlled condition are obtained through the likelihood function logl.; which is constructed

from three independent samples, one based on each component tested separately and one based on

system data. However, the only contribution from the system data to the likelihood function for A,

M, is the information as to which component has caused the system failure, while the contribution

from the component data consists of their lifetimes. A natural question is how much does the field

data improve the precision of our estimators of A; and A,5?

First, we compute the asymptotic variances of M.L.E.'s of A, 7‘2 obtained in the previous

section and compare them with the variances of the M.L.E. computed only from the component
samples. Second, we investigate some possible strategies for determining sample sizes under cost

_i®
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constraints which may occur if it costs to check which component caused the system to fail.
We assume that the sample sizes of both components are same, that is, n = m = N. Suppose
that the ratio of the component sample size to the total sample size, N/(2N + s), goes to ¢ as both N

and s go to o, Now the total information in the study is I(A) and

I

I(A) =cIl(l)+clz(l)+(1-2c)I3(7\.) 4.1
where A = 0‘1’ 2.2) and L; (A) is the information matrix based on the i-th experiment.
From the variance - covariance matrix I-1( A) of M.L.E.s of ( )‘1 s )vz )

A2 g+ A2 € (24 0p2) + g0} A2 A2 (A + 2921 - 20)
02(112 - 2.22)2 +2c¢c lllz (7\,1 + 12)2 02(7\.12 - ).22)2 +2cAiAy (Kl + 7\.2)2

A2 22 (A + 29021 - 20) A2 (hp +Ap)2{c (L 2 +292) + A A0}
22022 +2ehhy (A +A2 2 2-0pD2 #2c ARy (A + 092 ,

(4.2)

we obtain, by Theorem 6.1 of Lehmann (1983), (2N+ )1/2(A,,-4)—>N(0,1;;°]),
(2N+ )2 (Ry1-hp)—> N (0, Ipy"1), where Ij; 1 is the ivjth entry in the matrix I'I().
Based on the laboratory experiment EI only, the maximum likelihood estimator of Ayis

)‘1 0=N/Sp,1 and VN (KIO—XI) —>N (0, klz) .Thus the asymptotic relative efficiency (A.R.E.)

1

Ly A+ A2 A Ay +c (b +A? A2 +2y2) “s)
€1=¢ = )
7\.12 2 (7\.1 + 7\.2)2 7»1)»2 +C (7\.1 + 7\.2)2 (7»1 - 12)2
fhy=kA, then e; = (k+c (k2+ 1))/ (2k+c (k- D2} (4.4)
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Figure 4.1 shows the A.R.E. of 7\.11 toA 10 &t varying ratios of compenent sample size to total

sample size for five different k values. Notice that for fixed ¢ the more similar the hazard rates of
the two components are, the smaller the A.R.E. is. That is, the more information the system
sample contributes to reducing the variance. Figure 4.2 shows the A.R.E. at varying k's for given
ratio of sample sizes.Note that c=0 corresponds to the situation where N is very small compared to
s, c=1/6 to the case where s is of the order 4 times N, c=1/3 to the case where s is almost same as
N, ¢=2/5 to the case where N of the order 1/2 times N and c=1/2 to the case where s is very small

compared to N. The above result is also valid for the estimators, 3\21 and },20 since all the
formulae are symmetric in A) and .

In the previous section we saw that estimating the scale parameter 3 of the gamma distribution

involves estimating A + A, rather than A or A, themselves so that we shall turn to comparison of
the variances of A1 | + A4y and A{ g + A,y Using the same procedure as before we are led to the
ARE. of XIO + A’ZO to )‘11 + Ml which is c2=V(ll 1+1.12)/V(7\.10+).20) and

(A +29)2 {Ajhg +c (A -Ap)2) “s)
€ = . .
M2 +0p2) {2440y +c (O -Ap2? }

Setting A =k Ay,

2k k

ey =(l+—e—m)(1 - ). (4.6)
2 (k2 +1) ck-12+2k

The plots of the A.R.E.'s are shown for various k's and ¢'s in figure 4.3 and 4.4.Here it is found
that when the hazard rates of two components are identical or very similar the information from the
system does not contribute to a reduction of the asymptotic variance. An intuitive explanation for
this is that when the two hazard rates are similar the information from the system, which only
contributes information on which of the two hazard rates is larger, through the numbers of systems

which fail from each type of component failure, contributes least to the inference on the magnitude
of the sum of the two hazard rates.

There are several problems which may be considered in the light of the above results. We will




discuss two of these:

i ) If we suppose that it costs to check the cause of system failure, when is it resonable to do so.
ii) If we are allowed to randomly check only a fraction of the systems, how many systems should
be checked to achieve minimum variance under some constraints?

To investigate the above two problems we assume that the sample size of the system sample is
fixed at s and that the sample sizes and the unit price of testing both components are the same. Let

P be the total remaining allowable cost after administrative costs and the costs of collecting
system life data are removed and, let Py; be the cost of testing a component in EI and EII, and let
P, be the additional cost of checking a system to determine its failure mode. Suppose these costs

Pt . Py, and P, are predetermined.The sample sizes are assumed to be reasonably large so that

asymptotic results hold.
We consider question (i). We see that

N = P/ 2Py; : The maximum number of each component we could test

when systems are not checked.

R =P, /Py : The ratio of the costs,

Q=N./s :Theratio of the component sample size if systems are not checked to the

system sample size, and,
N =N, - R's/2:if we check all systems.

Our goal is to find the maximum value of R such that V(A1) N+Ap1, N) <V(}»10’1\é + 290, N
where the subscripts N, N, denote the component sample sizes when the estimators are

computed. Noting that V(A{ | \ + Ay ) i approximated by

1 (7»1 + 7\.2)2 Cf(ll - lz)z + }\.lkz
2N +s cf ceAg - k2)2 +2M Ay

] where c¢ = N/(2N+s), and

V(Ao Nt Mg N)cby (112 + 122) / N , we obtain the following approximate ratio

li
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V(A N+A Qa2 % 2
11N +221, N) 2Q +(1-R)
| ) [ ( 3. @.7)
V(A +M N) Q-05R k%+1 Q-0'5R<k D?+2k
10N .7 *20,N¢ ) 2Q+(1-R)

If we let r(R, Q, k) denote the above ratio of variances, after some algebraic

manipulation we see that r(R,Q,k) < 1 implies
R2(k + 1)2 - R (2Qk2 +4Qk + 4k + 2Q ) + {(k-1)2 / (k3+1)}4Qk > 0. (4.8)
Thus the maximum value of R for which checking of the system failure mode is advisable is

1
(B - [B2 - 4Qk(k-1)2}12 ), where B =Qk? +2Qk + 2k +Q. (4.9)

(k +1)2
Figure 4.5 shows the maximum value of R for each Q at different k's. For example, suppose that Q
is equal to 10 computed using the predetemined values s, P, and Py;.If we also assume that the
ratio of the hazard rates is ,3 , which might be guessed through past experience then this figure tells
that if the relative cost, R, is less than 0.1 it is advisable to check the systems. As discussed
before, if the two components have the same hazard rates then it is not recommended to do so.

Considering the question (ii), we find the number of systems to be checked to achieve optimal
results in terms of the variance of the sum of the two M.L.E.'s under the given constraints. Let s

be the number of systems to be checked among the s systems, and sety = s*/ N_. Noting that

N=N,.-05R s*, and recalling that the ratio of component sample to complete sample size c is

N/(2N+s*), we obtain the asymptotic variance of V(A N+>‘21 N) ignoring the constant terms as

1 (ck-D2+k }
qQy,R, k) = [ ]. (4.10)
1 - 0.5Ry {ck-1)2+2k )

The derivative of q with respect to y is,
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dq q(y)

o1 (4.11)
dy (1 - 0.5Ry)2[(k+1)2+y(2k-kR-0.5k?R - 0.5R )2

where q; (y) = y2[0.5R (k2+1)-k ][ 0.5R (k + )% - 2k ] (R/2)
+y[R(K2+1)(2k-0.5R (k+1)2)]
+[0.5k + 12(k2+1)JR - k(k-1)2.

Studying the function q;(y) in detail we find that q( y, R, k) is minimized at y = 0. That is, no
contribution is made by checking the system failure mode if the relative cost P, / Pyj is larger than |

2k (k-1 )2 1/1 &+ 1)2(k2 + 1) ], and that if the relative cost is smaller than the above ratio the

optimal number of sarstems to be checked is,
2k(k-1) &2+ 1)
N [

(k - 0.5R (k% + 1)) VR (2k-0.5R (k + 1)2) k-0.5R (k2 + 1)
Figure 4.6 shows the optimal fraction y = s*/Nc at the allowable R's fork = 2, 3, and 5. For

4.12)

‘example, suppose we have the idea that the ratio of the hazard rates, k is equal to 5, and that the
reladve cost R is equal to .1. Then this figure tells that the optimal number of the systems to be
checked is 1.5 times as much as N.

6. Graphical Inference

In this section, we discuss a graphical approach which is helpful in visualizing the condition of
existence of the estimators and also the degree of dependence as well as in checking feasibility of
the model. Later in this section we suggest estimators based on this graphical approach.
Throughout this section we assume the same model as in the section 2. However we shall handle

the model as if the component hazard rates }»1 and )\2 were known, based on data from the

laboratory experiment, since the estimation of A and X, presents little difficulty and has been

discussed in detail in section 4. Thus, the model in this section is that the lifetime, T, of a system in

the operating environment has a survival function Rg(t) =(1 + 81t) - 5.1
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The method we present in this section is based on the scaled total time on test (STTOT) plot of
u Barlow and Campo (1975). They have presented a graphical approach to failure data analysis for
arbitrary distributions, using the total time on test transforms introduced and discussed in Barlow
et. al. (1972).
Suppose A( t ) is the cummulative distribution function of T.
The STTOT transform for T is defined by

IA'la) (1)

STa®= ] Re(uydn/ ' Rg(uyan

=1-(1-t)oDe  forq > 1. (5.2)

.o

Here we note that ST 5 (t) depends only on the shape parameter o. Figure 5.1 shows the form of

{ the STTOT transform for several values of c.. Notice that for all o, the STTOT transform is below
the 45 © line (which corresponds to exponential system life) since the hazard rate of the series

system is decreasing.This figure tells us that the smaller the shape parameter is, the more
dependence that is induced.

B The emperical total time on test at Tg  is defined by Vg =T 1+Tg o+ * - +(s-r+1)Tg ¢
where Tg 1, Tg 2, * * -, Ty g are the ordered system failure times, and plotting V¢ /V; ¢ versus r/s
forr=1,2, s, wé obtain so called the emprical STTOT plot. Since V¢ /V ¢ converges to

) ST 4 (t) with probability one and uniformly in 0 t< 1 as s —> e and 1/s —> t, the STTOT plot
can be compared to the figure 5.1 for a graphical check of the model's validity. We can also use

the STTOT transform to obtain estimators of the shape parameter a Let C; =log(1-i/s) and D; =
log(1- Vg i/ Vg shi=1,..,s-1. From STA(t) =1 (1- )@ 1)@ we have log (1- STA®) =
(1-Vo)log (1-1t)sothat D;=(1-1/)C;, i=1,..,5s-1.

First we consider , as a reasonable estimator of o , the value of & which minimizes the squared

distances between D; and (1 - l/at) C;. That is,

s-1
% (D; - (1-1/a) 2.
i=1

|
K.
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The resulting estimator is o)y = X Ci2 /! Ciz -2GC Dy (5.3)
which is in the parameter space if 2 Ciz > X C; D;. A better estimator should be obtained by
weighting the D;'s differently since for i < j, Var (D;) < Var (Dj). The variance of D; depends on

the unknown parameter & so we weight by the variance of D; computed under an assumed
exponential distribution. If Ty, Ty, Ts are assumed to follow an exponential distribution, then
[1-Vgy/Vsg]followsa beta distribution with parameters s-r and r forr = 1,2, ...,s-1.Noting

that the r-th order statistics of a sample of size s-1 from a uniform distribution follows a beta

distribution with parameters r and s-r one can show that - D; is the i-th order statistics of a sample

. of size s-1 from a standard exponential distribution. Hence the variance of D; in that case is

2i 1
Vi = ,
=1 ()2

i=1,...,s-1

so that a weighted least squares estimator of o is

2 C.D:
2 Cl 171 . 2
Oyls = ZCi Ni/ E—-X—) 1fZCi Ni>zCiDiNi‘ 5.4

1 Vl

Once we have obtained an estimator of ¢ by either of the two least squares estimators, we

substitute this value into (3.4) and solve this equation numerically for 6, or 6. We note that the

unique root of the equation lies between 1/(a Ts,s) and 1/(a T 7).

Due to the computational complexity of these estimators, analytic properties of these estimators
are not available, so a small scale Monte Carlo study was performed in the next section to compare
these estimators with three other estimators, the M.L.E. in section 3, the Method of Moments
Estimator (M.M.E), and one suggested by Hui and Berger (1983).

The M.M.E.s, found by equating the first two sample and theoretical moments, so that

d

R

D YU

T




14
SEZ
Cmme = 1 + ————- if SEy>2E;2, and (5.5)
sEy - 2E4
0 By - 28 Ey= % z T2
= » whereE| = Tk, Ey = (5.6)
mme E, E, k=1 k 2 k=1 k

Hui and Berger (1983) have suggested estimators of & and 8 in a different context. To avoid
difficulties of maximizing the loglikelihood function with two unknown parameters they have

suggested a modified method of moments estimator as follows., The estimator of « is the solution
to

s s s(a+l) s Tj
-2 log(1l + T;) + 5 = 0, (5.7
i=1 E, Ejaf  i=l 1+ sTj/(E;®)

and the estimator of 8is [ E{ /s "L Itis possible that there is no finite solution to this equation.

With an argument similar to that used in M.L.E. case it can be shown that a sufficient conditon for
a finite solution to (5.7) is that s Ey >2 Elz,which is the same condition needed for exsistance of
the M.L.E. and M\M.E..

6. Monte Carlo Study

In this section we compare the estimators of the shape parameter & and the scale parameter 0
through a small scale Monte Carlo study. The main comparisions of interest are done in terms of

the bias, standard deviation of the estimates of o and 6, and the number of samples where the
estimators exist. Also the estimators of system reliabilty at t, = 0.1006 are compared. Random

samples of size s = 15, 30, 50, 75, or 100 were generated with Ay + Ay =3,B8=3,s08=1and

=2, 3, 5. 1000 samples were generated for each combination of s and a. The bias, standard

deviation of the estimates and NS, the number of samples where the estimator exists is reported in
table 6.1 for «, table 6.2 for 9, and in table 6.3 for an estimator of the system reliability obtained

from (5.1) at ty . The true system reliability at t, is .8255 when @ =2, .75 when o =
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Table 6.1: Bias and Standard Deviation (SD) of Estimators of

Sample Esti- oa=2 a =3 o =
Size mator NS Bias SD NS Bias SD NS Bias SD

15 mle 769 4.5 29. 642 7.3 39 522 387 573.
wls 852 48 41, 753 364 843. 665 82 53.

* 766 1.3 5. 636 1.3 9. 516 -0.7 5.

Is 762 68  49. 653 13.1 149. 558 303 493.
mme 770 9.1 37. 643 168 77. 522 69.8 925.

ber 770 144 65. 643 26.0 114. 522 1129 1505.

30 mie 916 28 20. 809 57 30 674 204 148.
wls 953 4.7 37. 870 13.8 141. 752 9.3 68.

* 912 1.1 3. 804 1.8 6. 660 32 29.

Is 877 64 52. 768 11".9 100. 669 13.7 109.
mme 916 6.1 32 809 9.9 104. 674 31.7 202.

ber 916 100 52 809 17.7 68. 674 56.3 347.

50 mle 979 58 114 916 3.6 18. 801 7.6 39
wis 981 1.7 10. 935 69 65. 80 9.0 97.

* 976 1.0 3. 912 29 29. 787 2.0 10.

Is 956 4.0 16. 864 64 33 756 134  88.
mme 979 85 131 916 6.6 23 801 114 52.

ber 979 154 241. 916 125 42. 801 234 91

75 mle 9% 0.9 4. 963 25 14. 893 12.8 139.
wls 998 1.0 3. 977 28 17. 915 80 94

* 9% 1.0 3. 958 13 S. 878 29 16.

Is 974 24 12 925 11.6 144, 823 6.6 22
mme 996 2.2 4. 963 47 24, 893 153 122.

ber 996 4.5 8. 963 9.6 38. 893 326 260

100 mle 999 0.5 3. 978 1.7 1. 892 95 84
- wis 1000 1.7  35. 989 2.1 12 913 19.6 307.
* 999 0.6 2. 978 1.3 S. 879 13.7 273

Is 989 1.5 9. 956 3.7 19. 835 11.0 8L
mme 999 1.7 5. 978 3.0 9. 892 13.0 120

ber 999 3.7 8. 9718 7.2 15 892 27.1 203.

"*' represents the weighted least squares estimator restricted to those samples where all estimators
exist.

.\ .
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Table 6.2: Bias and Standard Deviation (SD) of 6

Sample Esti- o =2 =3 o =5
Size mator NS Bias SD NS Bias SD NS Bias SD

15 769 0356 1.702 642 0.691
852 -102 0.742 753 0.210
766 -.027 0.025 636 0.390

1.900 522 1352 3.109
1.049 665 0.715 1.609
1.040 516 1.084 1.599
782 -.192 0.729 653 0.119 1.031 558 0.578 1.536
770 -.683 0.205 643 -513 0.348 522 -238 0.601
770 -803 0.122 643 -705 0.203 522 -546 0.348

mle
wis
*
Is
mme
ber

30 mie 916 0.112 0.919 809 0.175 1.049 674 0.558 1.609
wls 953 -.135 0.580 870 0.000 0.757 752 0366 1.118
e 912 -100 0.567 804 0.074 0.740 660 0.523 1.104
Is 877 -254 0.586 769 -096 0.745 669 0.180 1.026
mme 916 -.623 0.192 809 -469 0.338 674 -.199 0.576
ber 916 -798 0.095 809 -725 0.160 674 -584 0.282
mle
wls

979 0.016 0.648 916 0.075 0.766 801 0.256 1.559
989 -126 0.492 935 -012 0.618 850 0.184 0.869
* 976 -.115 0486 912 0.011 0.609 787 .0.267 0.850
Is 956 -263 0.514 864 -.112 0.663 756 0.105 0.863
mme 979 -575 0.184 916 -404 0.333 801 -.193 0.541
ber -~ 979 -792 0.079 916 -718 0.135 801 -615 0.232

75 mle 996 -025 0.522 963 0.030 0.624 893 0.128 0.817
wis 998 -125 0432 977 -027 0.555 915 0.112 0.728
* 996 -.124 0.431 958 -.010 0.546 878 0.153 0.715
Is 974 -247 0.275 925 -.144 0.603 827 0.014 0.747
mme 996 -541 0.174 963 -375 0.322 893 -.189 0.535
ber 996 -790 0.065 963 -717 0.120 893 -628 0.210

100 mle 999 -019 0437 978 -.028 0.515 892 0.033 0.683
wls 1000 -.101 0.381 989 -.075 0.472 913 0.020 0.628
* 999 -.100 0.401 978 -.055 0.465 879 0.055 0.615
Is 989 -216 0.423 956 -.165 0.511 835 -064 0.666
mme 999 -508 0.153 978 -345 0.297 892 -206 0.494
ber 999 -785 0.052 978 -716 0.104 892 -644 0.185

50

"*' represents the weighted least squares estimator restricted to those samples where all estimators
exist.
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Table ?)36 Bias and Standard Deviation (SD) of Estimators of System Reliability at
t,=.1 '
0=-
“. Sample Esti- a = ‘ a = a =5
‘. Size mator NS Bias SD NS Bias SD NS Bias SD

15 mle 769 -012 .0647 642 -018 .0815 522 -029 .1011
wls 852 -004 .058 753 -010 .0767 665 -024 .0967

* 766 -006 .0577 636 -015 0764 516 -030 .0968

Is 762 0.002 .0588 653 -006 .0748 558 -020 .0977
mme 770 0.037 .0503 643 0.031 .0661 522 0.012 .0926
769 0.064 .0463 643 0.067 .0616 522 0.054 .0921

30 me 916 -005 .0473 809
wls 953 0.002 .0424 870 -007 .0552 752 -020 .0674
* 912 0.001 .0426 804 -006 .0544 660 -027 .0665
Is 877 0010 .0434 769 0.002 .0551 669 -013 .0651
mme 916 0.037 .0357 809 0.024 .0490 674 0.001 .0613
ber 916 0.069 .0335 809 0.062 .0472 674 0.045 .0608

50 mle 979 -001 .0372 916 -003 .0429 801 -.006 .0545
wls 989 0.003 .0349 935 -001 .0412 850 -006 .0530
* 976 0.003 .0348 912 -002 .0411 787 -008 .0528
Is 956 0.010 .0359 864 0.005 .0431 756 -002 .0532
mme 979 0.035 0300 916 0.022 .0366 801 0.010 .0494
ber 979 0071 .0233 916 0.066 .0340 801 0.055 .0485

75 mle 996 0.000 .0290 963 -001 .0372 893 -005 .0442
wls 998 0.004 .0274 977 0.000 .0356 915 -005 .0436
* 996 0.003 .0274 958 0.000 .0357 878 -006 .0430
Is 974 0.010 .0292 925 0.007 .0374 827 -002 .0431
mme 996 0.034 .0244 963 0.021 .0327 893 0.007 .0406
ber 996 0.072 .0238 963 0.067 .0313 893 0.051 .0380

100 mle 999 0.001 .0243 978 0001 .0309 892 -002 .0375
wis 1000 0.004 .0234 984 0002 .0299 913 -001 .0392
* 999 0.004 .0233 978 0002 .0299 879 -002 .0390
Is 989 0.010 .0248 956 0.008 .0311 835 0.003 .0380
mme 999 0.034 0223 978 0.019 .0267 892 0.008 .0353
ber 999 0.075 .0216 978 0.067 .0261 892 0.052 .0345

007 .0577 674 -022 .0691

**' represents the weighted least squares estimator restricted to those samples where all estimators
exist.
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3,and .619 when & = 5. Also reported in each table is the bias and standard deviation of the

weighted least square estimators when they are restricted to those samples where the other
estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also
the weighted least squares estimator allows for estimation of parameters in many more samples
when s is small. In general the maximum likelihood estimator out performs the other estimators,
however, when the weighted least squares estimator is restricted to those samples where the
maximum likelihood estimator exists, this estimator performs much better when s is small. The
somewhat better performance of the M.L.E in terms of bias is deceptive since some of the estimates

of o are less than one, which implies that the mean system reliability is infinite. Also the weighted
least squares estimator of system reliability seems to out perform the other estimators of the system

reliability in spite of its relatively poor performance as an estimator of 6. Our recommendation is to
use the weighted least squares estimator since it more often provides estimators of the relevant
parameters and is somewhat easier to compute.

7. Comment On Test for Dependence
In this section we discuss the problem of determining whether there is a dependence
structure induced by an environmental factor. In our setting, we observe only the system failure

times T; with the assumption that the survival function of T; is Rg(t) = (1+61) &, As pointed out

in section 6, the graphical presentation indicates that the shape parameter, ¢ only affects the

dependence structure. Accordingly we will call the quantity Y= 1/ a measure of dependence
induced by the environmental factor. Since it is resonable to assume finite mean system lifetime,

that is, o is assumed to be greater than 1, y varies from O to 1. If there is no dependence induced v

is equal to 0 and the closer yis to 1 the more dependence induced

One possible statistics is constructed from the weighted least square estimator as

Q= (ZCDh;/Vy)/( ZCiZ/ Vi) (7.1)
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Under the null hypothesis of independence, - D; follows the distribution of the i-th order statistics

among the sample of size s-1 from an exponential distribution so that Q is just a linear combination

of exponential order statistics . Hence Qg has the same distribution as a linear combination, Q4(2),

of identically independent exponential random variables since the i-th exponential order statistics

can be expressed as a linear function of s-1 independent standard exponentials. Correspondingly
we have

s-1 ‘ .
Qs(2) = . . PiZ; (7.2)

1=

where Z; is a random variable following the standard exponential distribution,

1 s-1 Cj/Vj
and pj = — X . (7.3)
s-1 j=i sl 2
z Ck /Vk
k=1

The exact distribution of Q(2) is found in David (1981) as the mixture of exponentials,

s-1 Wi -t 5
fQuo® = £ — exp(—), where wi=p%2/ (TL(py 7)) - 7.4

i=l p; Pj
On the other hand we can note that if y goes to 1, Qg tends to have smaller value. Table 7.1 shows

the critical values of the standardized Qj for different sample sizes with the type one error

probability a = .01, .05, .1. Since the distribution under alternatives is hard to obtain a simulation
study has been constructed to study the tests power which is discussed later.
A second test is based on the cummlative total time on test statistic, which has been introduced

by Barlow et. al.(1972). From the cummulative total time on test statistics (CTTS) which they have
defined as

s V

5,1 . . . .
By =X where V . is the total time on test defined in section 5, we develope a
r=1V ’
$,S

test statistics Rs as

i
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s V 1

12s)\2(sly L. g, (1.5)
r=1 VS,S 2

which has smaller values as y goes to 1.

Table 7.1: Critical Values of the StandardizedStatistics of O

Sample Size 1% 5% 10 %
s=15 -1.8880 -1.4540  -1.1968
$=20 -1.9382 -1.4815 -1.2106

$=25 -1.9796 -1.5000  -1.2194
s=30 -2.0010 -1.5140  -1.2260
s=35 -2.0334 -1.5243  -1.2307
s =40 - 2.0526 -1.5322  -1.2345
s=350 -2.0816 -1.5453  -1.2404

A third test statistic was introduced by Klefsjo (1983). He has used the property of convexity of the
STTOT, ST () and obtained the statistic,

s (s-jJ+1)(Te;-Tei1)
Ks=2 a S sl (1.6)
j=1 vs,s
(-1D3j-36+1)22+26+1)j3)
where 3 = , which has smaller values as
6
Ygoesto 1.

Using the asymptotic properties of linear combination of order statistics he has shown that under
the null hypothesis, the test statistic K is asymptotically normally distributed. In addition to that.

he has constructed a list of critical values from the exact distribution of K under the null

hypothesis.

We have, by simulation, estimated the powers for the various shape parameter values. Sample
sizes 20 and 50 have been studied.In figure 7.1 and figure 7.2 the estimated power curves for the
three tests mentioned above are obtained by the following scheme. The total number of replication
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for each investigated y-value, measure of dependence, which increases from .00 to .75 is 1000.

The significance levels are equal to .05. The three powers at each y-value have been estimated from
the same set of data. Our investigation leads us to the conclusion that Qg and R outperform K and

that the test statistics Qg, which has been developed only for this specific model, is not better than
R which can detect more general alternatives than Q. However, the test statistics Q, is simple to

obtain while we are making a graphical inference on the shape parameter and is guaranteed to keep
power as high as R.
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A RANDOM ENVIRONMENTAL STRESS MODEL FOR COMPETING RISKS

John P. Klein and Sukhoon Lee

Department of Statistics
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ABSTRACT

_ Arandom environmental effects model is proposed for competing risks experiments. The
model assumes a random stress, Z, which changes the scale parameter of each of the assu.ned
Weibull times to occurrence of the risks. Some general properties of the model are discussed, and
specific properties for a Uniform or Gamma stress model are presented. Estimation of parameters
under the Gamma stress model is considered, and a new estimator based on the scaled total time on
test transform is presented.

INTRODUCTION -

The problem of competing risks arises naturally in a number of engineering or biological
experiments. In such experiments, for some items put on test, the primary event of interests (such
as death, component failure, etc.) is not observable due to the occurrence of some competing risk
of removal from the study (such as censoring, failure from a different component, etc.).
Competing risks arise in an engineering context in analyzing data from

(a) series systems,

(b) field tests of equipment with a fixed test time and a random or staggered entry into

the study, or

(c) systems with multiple failure modes.

Competing risks arise in biological applications in analyzing data from
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(a) clinical trials with a fixed trial duration and staggered entry

(b) clinical trials with some patients withdrawing from the trial prior to response

(c) studies of the time to death from a variety of causes

A common assumption made in analyzing competing risks experiments is that the potential
(unobservable) times to occurrence of the competing risks are independent. This assumption is not
testable due to the identifiability problem. That is, for any dependent competing risks model, there
exists an independent competing risks model which yields the same observables. (See Basu and
Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can
be appreciably misled in modeling competing risks by erroneously assuming indepencence.

In this paper we present 2 model for dependence between the various risks by assuming that
dependence is due to some common environmental factor which effects the potential times to
occurrences of each risk. In section 2 we present the model and study its properties for bivariate
series and parallel systems. In section 3, we consider estimation of the model parameters for
competing risks systems.

2.  THEMODEL

For simplicity we shall consider the problem of bivariate systems and discuss our model in
terms of engineering applications. We assume that under ideal, controlled conditions, as one may
encounter in the laboratory in the testing or design stage of development, the time to failure of the

two components, to be linked in a system, are Xg and Y. We suppose that under these

conditions, Xq,Y have survival functions F(, Gg on [0, o). We assume that both X andY
follow a Weibull form with parameters (1} | ll) and ( ube LZ), respectively, That is, Fo(x) = exp(-
llxnl). The Weibull distribution, which may have increasing (n > 1), decreasing (n < 1) or

constant failure rate (1 = 1) has been shown experimentally to provide a reasonable fit to many
different types of survival data. (See Bain (1978)). We now link the two components into a
system in such a way that under ideal lab conditions the two components are independent.

Now suppose that the above system (X, Yg) is put into operation under usage conditions.
We suppose that under such conditions the effect of the environment is to degrade or improve each

component by the same random amount. That is, the effect of the environment is to select a
random factor, Z, from some distribution, H, which changes the maginal survival functions of the

two components to FOZ and GOZ. A value of Z less than one means that component reliabilities are

simultaneously improved, while a value of Z greater than one implies a joint degradation. The
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resulting joint reliability of the two components' lifetimes, (X,Y) in the operating environment is

F(x,y) = E[cxp(-Z(llan )\,zynZ ). 2.1
This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context
when Fg, G are exponential and H( ) follows a gamma distribution. This basic dependence

structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and
later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar -

model when H( ) has a gamma distribution and Fq(t) = Go(t) = exp(-t").

The model described above for a general distribution of the environmental stress has a
particular dependence structure which we summarize in the following lemmas.

Lemma 1. Let (X,Y) follow the model (2.1) where Z is a positive random variable with finite

r s
(— + —)M inverse moment. Then
M m

My -simp -1/ ,5M9)
EXTYS)=A Ay I+ rmyp) 0+ smp) EZ ) (2.2)

The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with parameters

~ -riny -ty
(M1, A 2) and (M, Ay 2), respectively and E(X"Z=2) = &, z ['(1+ r/my) with a similar

expression for YS. When the appropriate moments exist, we have

-1my
(A) EX)=E(XXg)E@Z ),

2 -l/T]l -1/T|1 2
B) VX)=EXp)Var(Z )+EEZ )2 Var(Xp),

-Imy o -tmp
(C) Cov(X,Y) = E(Xq) E(Yg) Cov(Z ,Z ) which is greater than 0.

If np=Np=1 then the correlation between (X,Y) is

I(1+ 1m)2 Var(z'1/M)
p =

Varn(Z VM) r(1+2m)+ (C(1+2m) - T +1m)2) Bz 1My2

[n this case the correlation is bounded above by I'(1+ I/T])2 / T(1+2/m). Figure 1 shows the

maximal correlation as a functcion of 1 for 1} € (0, 10). Note that this maximal correlation is an
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increasing function of 1. One can also show that F(x, y) is positive quadrant dependent for any

n 1’ nz'
Exact expressions for competing risks quantities of interest can be computed when a
particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

models. Consider first the gamma model with h,(z) = pa za-1 exp(-bz)/T(a), z > 0. For this

model, the joint survival function is

ba
F(x,y) = (2.3)

n n
[b+ Agx . + Aoy ﬁa

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are
univariate Burr distributions with

-lim
E(X) = (Ay/b) ll(l+1/nl)r‘(a- Imy) @), ifa> Im,

2m)  Ts2mpla2my) Ta+mpLaimy) ,
Var(X)=(7Ll/b) { -1 . ] },ifa>2/n1
I (a) I'(a)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

- -y -l/my Ia-1mq-1my) T(a-1/mp) I'(a-1my)
Cov(X,Y) = (Ay/b) (Aq/b) F(1+1my) I'(1+1m9){ - %

Q@) [(a)

fora>1m + 1/m,. For the gamma model, the reliability function for a bivariate series system is

given by

oM
Ry() = (I+A/b)t + (Ag/b)t )3, (2.4)
and for a parallel system by

n n n ny
Ry = (LA B) + (1+ g/t 3= (Le(Apbt + Oyt )2 2.5)

Figures 2A-E are plots of the series system reliability for A= 1, X, = 2 and several combinations

..

-




of n 1 Ny Each figure shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull

model. In all cases, b = 1. For these figures we note that for fixed A, )‘2 Ny, Ny, t, the series

system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the
parallel system reliability (2.5) for the above parameters. Again, the reliability is a decreasing
function of a. Also in both the series and parallel system reliability, the shape of the reliability
function is quite different from that encountered under independence.

The gamma model is a reasonable model for the environmental stress due to its flexibility and
the tractability of the model in obtaining close form solutions for the relevant quantities and in
estimating parameters. However, in some cases, such as when the operating environment is
always more severe than the laboratory environment, the support of H may be restricted to some
fixed interval. A possible model for such an environmental stress is the uniform distribution over
[a,b]. For this model, the joint survival function is

I n2 ni n2
fexp (-b(Ag x = + Agy ~ ) -exp(-a(hjx + Ayy )]
F(x,y) = (2.6)

™ n
(b-a)(klx +?\.2y %

M-HMyp M-y
-a

-1/“1
= In(b/ay([A(b-a)] ifny=1,
-2/ M-2myp M-y
(b-a)
Mi-Vnp M-/my)
T (1+1m2ny (b P Y. if My =12
(ny-D*(b-a)
2/(A;2ab) - n(b/ a)2/{(b-a) {12 ifnq=1
| An(b/ 2) I s
At - ] ifng=
L o) 172 1 al2)2
o
-




FIGURE 2 A
SERIES SYSTEM RELIABILITY UNDER GAMMA (R, 1) MGDEL
u FOR THE ENVIRONMENTAL STRESS. )
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FIGURE 2 B
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 C
_ SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) HODEL
i FOR THE ENVIRONMENTAL STRESS.
M=1.0, x2=2.0, m=2.0, =2=2.0.
] o
o
-
— I
\
P
c__;-l
wn
'\
. & KEY U
© Q Izt 1/
+ --~-SHRPE 2
X ----SHAPE 4
¥ ----1INDEP
o
ZLD
©o]
}_
(@
=
Do
LLLD
® 1
(e ]
|
(an
>
>
o
207 %
V] D
[oV]
6—\
()
o
C;-«
o
(en]




FIGURE 2 D
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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@ FIGURE 2 E
- SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
* FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 R
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 B
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
FOR THE ENVIRONMENTAL STRESS. -

M=1.0, »2=2.0, m=1.0, 7.=2.0.
o
o
2 w
®
D-‘
n
~
o ® ----SHAPE 1/2
A ----~3HAPE 1
% ---~5HAPE 2
X ---~SHAPE 4
% ----~INDEP
i
=z
Do"
—:
|-—
o Q _
=
0
u_LD Q
0‘-1
-—l 9
a G
> 5
—
>m O
oo™
S
A0
N
Y
D'—
m =)
O-..
=S
- " Vi yi Oﬁ-““—'“ﬁ
T T > O f
.00 1.00 2.00 3. 00 4. 00 5.00
TIME. i




FIGURE 3 C
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
B FOR THE ENVIRGNMENTAL STRESS.
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FIGURE 3 D
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
FGR THE ENVIRONMENTAL STRESS.
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FIGURE 3 E
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1)
FOR THE ENVIRONMENTAL STRESS.
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and

MM2-M1-M2 MM2-M1-M2

N2 Ny N2
F(+lm)T(1+1my) M My ® -a
Cov(X,Y) = {
Imp 1My MmMmz2-n-12) (b-a)
A M
M-l np-1 mp-1 M-l
MM M "2 M
M2 ® -a - -a )
5 Yifnp#1L, nya=LU/ng +1Mmy=l
(My—-1)(ny-1) (b-a)
ni-1 ng-1
2 M
F(1+1m1)1‘((2n1-1)/n1)[ in(b/a) M2 @ -a )(;’"1 l/m)]
- -a
tmyp - nypmy-D) ®-a) (D) -2
M M
iflml+ 1/T]1=
MMMy T T - T Ty ni-l il
i My iy M M
[ (1+1m;) [Tli“ih (® -a ) M & -a ) in(ba)
1m; (m; My - M - M) (b-2) mi-1)  (b-a)?
Mo
ifn=1,n=1
] 1 0n(b/a)?

( .
(A A9) (@)  (b-a)?
For this model, the reliability function for a series system is

n n n n
Ry(t) = [exp(-b( At l+lzt 2)-c:xp[-a( At l+ Ayt 2)]] 2.7

H




m b
(b-a) (At  +Xyt )

and for a parallel system is

n n n n
Rp(t) = [exp(-b(Aqt l) -exp(-a At l) + [exp(-b Ayt 2) -exp(-a Ayt 2)

-Rs(t)
n n
(b-a) At ! (b-a) Ayt 2

Figures 4A-E show the reliability for a series system and figures 5A-E for a parallel system

under the uniform model for various combinations of )‘l' )‘2' M 1, M 2 a,b. Notice that when A =

.25, B = .75, which corresponds to an operating environment which is less severe than the test
environment, the system reliability is greater than that expected under independence, while when
(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test
environment, the system reliability is smaller. AlSo when the (a,b) contains 1, which corresponds
to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.

3. Estimation of Parameters Under Gamma Model

Consider the model (2.3) with 1|} =N, =M. For this model, the reliablity for a series system

Ry()= (1 + )3, (3.1)

b

Notice that this model depends only on two parameters 8 = (A + Ay)/b and a so that if we had data

only from systems on test in the operating environment, the only identifiable parameters are a, 6,

_|®
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FIGURE 4 R

SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRGNMENTAL STRESS.
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FIGURE 4 B
h SERIES SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
: FOR THE ENVIRONMENTAL STRESS.
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SURVIVAL FUNCTION

FIGURE 4 C
SEAIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4 D
D SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MOOEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4 E
SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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SURVIVAL FUNCTION

FIGURE S A
PARALLEL SYSTEM RELIRBILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 B
PARALLEL. SYSTEM RELIRBILITY UNOER UNIF (R, B) MODEL
EAR THE ENVIRONMENTAL STRESS.
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FIGURE 5 D
PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MGODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE S5 E
n PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
| FOR THE ENVIRONMENTAL STRESS.
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N, not ;'l' Lz, N, 3, b. However, in many instances we have extensive data on the performance of

the components in the lab under ideal operating conditions so that one may consider A, A,  to be

i

known based on estimates from this data. We shall focus on the problem of estimating  and a,

based on data on the system failure times collected inr the operating environment. Letty, ..., t, be

the failure times for n such systems put on test, and, let w; =tM,i=1, .., n.

Prior to attempting to estimate (a, 6), we would like to check if the model (3.1) is feasible.
A graphical check of this model can be done through the scaled total time on test (STTOT) plot of
Barlow and Campo (1975). The STTOT for W is

) Rs(t)dt ~
0
Gy (1) = = 1-(1-)@ 1) for a5 1. (3.2)
Fla)
| Rs(t)dt

Note that (3.2) depends only on a. Figure 6 shows the form of the STTOT for several values of a.

Notice that for all a; the STTOT is below the 45° line (which corresponds to 'cxponent.ial system . -
life) since the hazard rate of the series system is decreasing. Let

i
j=1

where W(l) < W(z) S..S W(n) are the ordered systems failure times be the total time on test at

W(i). The empirical STTOT plot then plots (i/n, T,(W (i))rr(w (n)» which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by

“_—M




FIGURE 6
SCALED TOTAL TIME ON TEST TRANSFORM
FOR GAMMA MODEL.
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9

comparing the empirical and theoretical STTOT plots. When there is no random environmental

effect and the components are independent, then the empirical STTOT plot should look like the 45°
line. Also as a tends to infinity this plot approaches the 45° line.

We now consider several estimates of a and 6. The log likelihood for the model (3.1), based

on a sample of size n, is
n
L@@@)=nina+n2n0-(a+1)3 2n (140 W)
i=1

so that

n
d/daL(aB)=n/a- T tn(1+0W)
i=1

n
and 9/00 L(a,8) = n/0 - (a+1) I, wi/(1+ Bw;)
i=1

For (3.5) we note that the maximum likelihood estimator of a

n

amle = "
z Qn(l +9Wi)

1=
and the maximum likelihood estimator of 6 is the solution to

n n Wi

— - 4D E——)=0.
0 Znn(l+9Wi) 1+0W,

n n
One can show that 0 is positive if n 3, Wiz >2AL wi)z.
i=1 i=1

In such case 8, is obtained by solving

3.4

(3.5)

(3.6)

3.7)

(3.8)

(3.9




10

(3.8) numerically.
A second estimator of (a, 0) is the method of moments (mme). Since E(W) = [ e(a-l)]'1
and E(W2) = 2{ 02(a-1)(a-2)]- ! where a > 2, we have

2mme = 1 T’ (3.10)and 8y = = it 22w G.11)
mme=1+ . an = .
T w2 - 2T wi?) mme "y wi(T w;)

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist.
A third estimator was suggested by Berger (1983) in a different context. He suggested

estimating 8 a modified methods of moments estimator Oper = (a wy L, (3.12)

where w = ¥ wy/n,

which is nsed as the &rue value of 8 in the likelihood (3.4) so that the estimator of a is the solution
to
w; (a+1) wj

T on(le—)4 ) =0 (3.13)
aw wa’ l+w;/(aw)

A final estimator is based on the STTOT plot. Let C; = dn(1-i/n) and D; =
nn(l-Tn(W(i))/'I'n(W(n))), i=1,..,n-1. If (3.2) holds, then we should have
D;=(1-l/a)C,i=1,..,n-], (3.14)
so the value of 2 which minimizes
n-1

Z (D;-(1-1/a) Ci)2 is a reasonable estimator of a

1=

X C;?
The resulting estimator is aj = 5 (3.15)
>¢c2-3CD;

. )
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FIGURE 7 A
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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FIGURE 7 B
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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1

which is in the parameter space if Y Ciz > X2 C;D;. A better estimator should be obtained by
weighting the D;'s differently since for i < j, Var (D) < Var (Dj). The variance of D; depends on
the unknown parameter a so we weight by the variance of D; computed under an assumed

exponential distribution. The variance of D; in that case is

1
V; }: i=1,..,n-1 (3.16)
=1 ( n-J)7

so that the weighted least squares estimator of a is

p CiZN i
a =
wls C? CiDi

C—-2—)
\4

i Vi

if £C;2/V; > TC;DyV;. 3.17)

Once we have obtained a by either of the two least squares estimators, we substitute this value into
(3.6) and solve this equation numerically for 8/ or Owis:
The condition X, CizN i > £ C; D;/V; includes a few more possible samples than the
condition (3.9) for the other three estimators. However, those samples which satisfy X Ciz/vi >
2 C; D; /V; for which (3.9) fails to obtain yield very large estimates of 8. Since a reasonable
model! for T when 6 and a are not estimable is the independent Weibull series system which hés
system reliability very close to (3.1) when a is very large, this is not a problem. Figures 7a and 7b
are scaled total time on test plots from two simuilated samples of size 30 from (3.1) witha = 3,0 =
1. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different
from the 45° so that an exponential model might not be unreasonable. For this data set only the

weighted least squares estimator exists and it yields ay g = 45.33 and 8 = .0567. For the data in

figure 7b all estimates exist, and we have




Bpte = 93 amic = 298

8mme = 491 Smme =486
Bper = -720 aper = 7.02
By =739 3y = 3.58
Byis =970 Syls = 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.
Random samples of size n = 185, 30, 50, 75, or 100 were generated with A + Ay =3,b=3,506
=]1and a=2,3,5. 1000 samples were generated for each combination of n and a. The bias,
standard deviation of the estimates and n, the number of samples where the estimator exists is
reported in table 1 for a, table 2 for 6, and in table 3 for an estimator of the system reliability
obtained from (3.1) at tg = 9.085. The true system reliability at tg) is .8255 whena = 2,.75 when a
=3,and .619 when a= 5. Also reported in each table is the bias and standard deviation of the least
square and weighted least square estimators when they are restricted to those samples where the
other estimators exist. .

From these tables we note that Berger's modified estimator performs very poorly. Also the
weighted least squares estimator allows for estimation of parameters in many more samples when n
is small. In general the maximum likelihood estimator outperforms the other estimators, however,
when the weighted least squares estimator is restricted to those samples where the maximum
likelihood estimator exists, this estimator performs much better when n is small. The somewhat
bcwperfonnmicec;fmew.ﬁinmsofbias is deceptive since sorﬁe of the aumat&s ofa are less
than one, which implies that the mean system reiliability is infinite. Also the weighted least squares
estimator of system reliability seems to outperform the other estimators of the system reliability in
spite of its relatively poor performance as an estimator of 8. Our recommendation is to use the
weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.
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ESTIMATING RELIABILITY FOR BIVARIATE
EXPONENTIAL DISTRIBUTIONS
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SUMMARY. The problem of estimating reliability for the bivariate exponential distri-
butions of Block and Basa (1974) and Marshall and Olkin (1967) is considered. For Bock and
Basu's model & minimum variance unbiased estimator of the joint survival function is obtained
in the oase of identically distributed marginals. For the non-identically distributed case the
pecformance of the maximum likelihood estimator and the jackknifed maximum likelihood esti-
mator is studied. For Marshall and Olkin's model the performance of several different para-
meter estimators snd biss reduction techniques for estimating joint reliability are considered.

1. INTBODUCTION

Let X, Y have either the bivariate sxponential distribution (BVE) of
Marshall and Olkin (1967) or the absolutely continuous bivariate exponential
distribution (ACBVE) of Block and Basu (1974). These two distributions
have found considerable use as models for both physical and biological systems.
The problem of interest is to estimate the joint reliability function,
F(z,y) = P(X >z, Y > y), for each of these two distributions. A natural
estimator of F(z, y) is obtained by substituting in the appropriate expression
for F(z,y) good estimators of the model parameters. Often, as seen in Pugh
(1963), Basu (1964) or Basu and El Mawaziny (1878), such estimators can be

considerably biased. We wish to obtain reduced biased estimators of F(z, Y)
for both the BVE and ACBVE distributions.

In Section 2 this estimation problem is considered for the ACBVE. In
the case of identically distributed marginals, using the Rao-Blackwell and the

AMS (1980) subject classification : 62N05

Koy words : Minimum variance unbiased estimators ; Bivariate exponential ; Reliability ;
Maximam likelihood estimator ; Jackknife ; Survival funotion.
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Lehmann-Scheffé theorems we obtain minimum variance unbiased estimators
(UMVUE) of F(z,y). In the case of non-identically distributed marginals
this approach fails since there are no complete sufficient statistics. Here we
investigate the performance of the maximum likelihood estimator as well as
the jackknifed maximum likelihood estimator.

In Section 3 we consider the estimation of F(z,y) for the BVE. Again
there are no complete sufficient statistics so no minimum variance unbiased
estimators can be obtained. Several different methods for estimating para-
meters are oonsidered. For each estimation procedure we consider several
bias reduction techniques.

2. ABSOLUTELY CONTINUOUS BIVARIATE EXPONENTIAL

2.1 Iniroduction. Let (X, Y) have the absolutely continuous bivariate
exponential distribution of Block and Basu (1974) with parameters A,, A, > 0,
Ay » (X, Y) ~ ACBVE(A,;, A, Ayg)). This distribution is closely related
to the bivariate exponential of Freund (1961). It has been used by Gross,
Clark and Lui (1971) and Groes (1973) to model the lifetimes of two organ
systems and by Groes and Lam (1981) for modeling paired survival time data
such as survival of a tumor remission when a patient receives two types of
treatment.

For this model the joint reliability function ia

F(z,y) = (’\1—_:/\—5 exp(—A,z—Agy—A,;, max(z, y))
— M eep—
Atay SP(—Amax(z, ) forz,y >0, ... (211)

with A = A1+A'+A1’-

This distribution has the bivariate loss of memory property (LMP)
defined by Block and Basu (1874). It is the absolutely continuous part of
the Marshall and Olkin (1967) bivariate exponential.

We shall consider two cases for estimating F(z, y), one where the marginals
are identically distributed and the general model.

2.2 Equal marginals. Consider the model (2.1.1) with A, = A, =«
and A,y = f. Let (2, ¥,), ..., (s, ys) be a random sample from (2.1.1). Let
U, = Zmax(zy, y;) and Uy = Z(xy+y). Mehrotra and Michalek (1976) show
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that (U,, U,) is a complete sufficient statistio for («, 8). The MLE of =, .’
are given by :

1 1 2 1
a!.=n(“’__“1 — qu—w) =1 S e, 22D

L ‘ These estimators are biased by a factor of s/(n—1) so the estimators
| a=”—:1amdﬁ=’l§lpmmemmofa snd A. Two natural

P

estimators of F(z, y) are obtained by sustituting either (&, 8) or (&, f) in (2.1.1).
We now use the method proposed by Basu (1864) to obtain the UMVUE
of f(z, y).
Define

1 #X>2 Y>y
¢(z.y:x.Y)={ . (222

0 otherwise.

Clearly ¢(z, y : X, Y¥) is an unbiased estimator of F(z, y) based on a random
sample of size one from & ACBVE (a,x, /). By the Rao-Blackwell and
Lehmann-Scheff§ theorems the estimator i(z, y) =Bz, y; X, Y)|u,, uy)
is the UMVUE of F(z, y).

To simplify the calculations let T' = U,—~U, and V = 2U,~U,, that is
T = Z min(Xy, Y4) and ¥ = Z max(X¢, Y}~ min(Xy, ¥;). From Mehrotra
and Michalek (1976), the joining density of (T, V) is

(h?(f.).' i‘;ﬁtﬁ). tn=1 y*~1 oxp(—(2z+A)t—(a+pw), £, 0> 0

(2.2.3)

fi,») =

0 otherwise.

Now split the sample of size n into two independent subsamples of sizes
one and n—1, respectively. Let (Z;, Z,) denote the sample of size one and
let T';, V, denote the statistics T' and ¥V defined on the remaining n—1 observa-
tions. The joint density of (Z,, Z,, T, V,) is

m;t(,’.’:‘;‘f?f?” % o1t exp[—(2a+P)h—(a+h)v,

—an—(a+hk,] if 2 <z

J f(21, 2g by, 1y) = < (2.2.4)
%ﬂ a4 ot expl— (24P —(at+- B,
L —(@t+fm—az] if 2z <z
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for ¢, v, > 0.
Cle&tly V = V1+max(z‘, Z’)'—min(zl, Zﬁ) &nd T = T1+min(z!, Z.).
Hence the joint density of (Z,, Z,, T, V) is
S22, ¢, 9)

- <2°‘____,__;[-(ﬁ):(;=ﬁ]ﬁ>' (f=—2)% o —~23-+2,)7texp(—(2a+B)—(a+B))

for 0 < 0,80 <z, <t 2 <23 <O+

= BLEPPELRY (1 sgr-tto—i+rlexpl—(2a = e+ )

for0<v,t0<z<t;z<z<vtzy .. (22.5)
Thus the conditional distribution of Z,, Z, given T', V is

o oY U % 2Vl DPAD Y

o 7 <23 <0+n
fz, 2| T=t, V=0)= . (2.2.6)
— 13t — e T -2 '
(I B o oy,
2y < 2y < V425,

To find B(¢(x, ¥; Zy, Z,)|T = ¢, V = v) consider three cases~
Case 1: t>2=1y> 0. Here,
Egz,¥; Z;, Z))|T =1, V =)

P S Vil Y v il z (™1
_23“{ : A dzgdz, = (1-7( . e (2.2.7)

z

Case 2: z<y<? Here

Bgz,y; 2, Z)|T =4V =)

= I I ﬂzb 2y | L v)dzldzz+ f .f f (zlv Z l ¢ v)dzldzt
{(21 23) 21> Y 22>Y} {(21 22) t 2<B <Y, Yy <22}

= ( -1 )Ll'{'} “j"'1 1 (n—1)%(t—z)" 3tz —2)""? dzydz,

t :y 2 (h-Tyn-T

("% oyt

(n+k—1)

g\, (1)
- (1 ) + gya-ipat rEo (—1)*

[(f—z)n+k-1 — (—y)n+E-1], e (2.2.8)

!
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Case 3: t> x>y > 0. By symmetry
B y; 2y, Z3)|T =, V =)
n—1
oz, ey e )
(=F) -+ 2w
[(t—y)»*2—(t—z)ntk-1). v (2.2.9)
2.3 Unegqual marginals. When (X, Y) is ACBVE (A;, A,, A,,) with A,
not known to be equal to A, there does not exist a set of complete, sufficient
statistios for (A;, A, A;3). Hence, the technique described in Section 2.2
fails,. Maximum likelihood estimators of (A,, A,, A;;) are obtained numeri-
cally by maximizing the likelihood function as described in Block and Basu
(1974). The maximum likelihood estimator, F(z,y) of F(z,y) is obtained
by substituting these estimators into (2.1.1).

For small sample sizes, this estimator may be highly biased. To reduce
this bias we consider the jackknifed version of the MLE estimator. This

estimator is constructed as follows : Let ﬁ,‘"’_’,,(z, y) be the MLE of F(z, y)
based on the subsample of size n—1 obtained by deleting the j-th observation

from the original sample. The jackknifed version of F(z,y) is

(v—z4-t)n-1-k h

?‘mx(z, Y) = nfi’(x, y)— (',"—_l) % i’,’._,(az, y). .. (2.3.1)
n f=1

Miller (1974) shows that this estimator removes the n—!-th order term in the
expansion of the bias of F(z,y).

To study the performance of the MLE and the jackknifed MLE of I-l'-'(a:, Y),
a simulation study was performed. For various values of A;, A,, n), and =,
500 ACBVE samples were generated by the method of Friday and Patil
(1977). Values of (z, y) were picked so that F(z,y) = 9. The study showed
that the jackknifed maximum likelihood estimator had significantly smaller
bias than the MLE. For sample sizes of 10 or larger, the bias of this estimator
is not statistically different from zero. However, the jackknifed MLE has
a glightly larger mean squared error than the MLE in all cases considered.

3. BIVARIATE EXPONENTIAL

3.1 Parameter estimation. We say (X, ¥) follows the bivariate exi)o-
nential distribution of Marshall and Olkun (1967) with parameters A, > 0,
Ay > 0, and Ay > O((X, Y)is BVE (A, A,, Ayy)) if the joint survival function is

PX >z Y >y = Fzy) = exp(—Az—Ay—2A,, max(z,y)) ... (3.1.1)
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for >y > 0. This distribution is not absolutely - continnous -since
P(X = y) = Ay/(A,;+Ay+2,y). The marginals are exponential as is min(X, Y).
This is the only bivariste distribution with exponential marginals and the
loss of memory property (LMP) as defined in Block and Basu (1974). (
To estimate A,, A;, A;4 based on a random sample (X, ¥,), ..., (Xu, Y4),
1 let ny, ny, ), be the number of observations with X less, greater, and equal
to Yy, respectively. Let T = I max(Xy, ¥y), Sz = ZX¢, Sy = Z¥;. Bhatta-
' charyya and Johnson (1971) show that (n,, ny, ¢, 8,, &) are jointly minimal - -
sufficient but not complete. Hence, the approach of Section 2.1 cannot be -1
applied. The maximum likelihood estimators are obtained by numerically
maximizing the likelihood equations. Bhattacharyya and Jobhnson (1971)
| obtain conditions under which the MLE exist, and show that these estimators
sre asymptotically trivariate normal with mean (A,, A, Ayy).

Bemin, Bain and Higgins (1972) have obtained method of moments
estimators of the parameters. Proschan and Sullo (1876) obtained estimators
of the parameters by using a first iterate in the likelihood equations. Arnold
(1968) gives estimators of A; based on m,, n,, 7,y and U = = min(Xy, Y).
In the competing risks framework where only the minimum of X and Y is
observed, these estimators are the unique minimum variance unbiased esti-
mators of A;. All of the above estimators are asymptotically trivariate
normal with mean (&,, 4,, A;y).

3.2 Estimation of tail probability. The problem of interest is to estimate

F(z,y) given by (3.1.1). A natural method of estimating (3.1.1) is to use
one of the above methods to estimate (A,, A,, A;,) and substitute these esti-
mates in (3.1.1).

Several methods may be used to reduce the bias of these estimators.
The first approach is to expand the substitution estimator in a Taylor series
about (A;, A,, Aq) keeping only second order terms. When E(X;) = Aq, the
bias of the substitution estimator is approximately equal to

EFsus(z, ) 2 Flz, p)1+0%2)
= (z,y, max(z, ¥)2(e, y, mox(z, y)) ... (3.2.1)

and I is the appropriate covariance matrix of (3, &;, A,,). This suggests a ST
reduced bias estimator of F(z, y) given by

where

; Faste, v) = Paontw, y)i1+o4/2) . (822)
where 4% is an estimator of o3, '

1o
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A second approach to the bias of .l"":ma(z, y) is through asymptotic
theory. Note that In Fgyp(z,y) is asymptotically normal with mean

- —AZ—Ay—A;s max(z,y) and variance ¢®. Thus, for large n, isva(x. y)

has a log normal distribution and
E(j'sun(x. ¥)) - F(z, y)exp(c?/2) .. (3:23)

and V(ﬁ,.;,(z, ¥)) = F(z, y)Pe*’(¢” —1). This suggests a reduced biss esti-
mator of F(z, y) given by

Funtz, y) = Fspalz, yexp(@]2). . (324)

A third method to reduce the bias of Fsya(z, y) is the jackknife as described
in Section 2.3. ‘

To compare these estimators, a simulation study was performed. 500
BVE obeervations were generated for various combinations of 7, 'Al, Ag, Age.

Values of (z, y) were selected so that F(z, y) = -9.

Several conclusions can be drawn from the study. First, for all bias
reduction techniques, those based on Arnold’s estimators have a significantly
larger mean squared error but a smaller relative bias. Secondly, there appears
to be very little difference in the estimators based on the other three methods.
For Arnold’s estimators, all three bias reduction techniques yield approxi-
mately unbiased estimators with comparable mean squared errors. For the
other methods, only the jackknifed estimator is approximately unbiased
due to bias of the estimators of the parameters themselves since first order
(bias) terms were neglected in the derivation of (3.2.2) and (3.2.4). The
expensions based on Arnold’s estimators are correct since these estimators
of Ay, A, and 7,, are unbiagsed. Our recommendation is to jackknife either
the Proschan and Sullo estimator or the method of moments estimator since
these are computationally easier than the MLE and have the smallest bias
and mean square error of the three bias reduction methods.
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THE ROBUSTNESS OF SEVERAL ESTIMATORS OF THE SURVIVORSHIP
PUNCTION WITH RANDOMLY CENSORED DATA
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Key Words: Censoring, Parauetric, Nonparametric, Product-Limit

Abstract: The problem of estimating the survivorship function,
R(t)=P(T>t), arises frequently in both the engineering and biomedical
sciences. In many applications the data one sees are censored due to the
occurrence of some competing cause of failure such as withdrawal from the
study, failure from some cause not under study, etc. In the biomedical
sciences the distribution free estimator suggested by Kaplan and Meier
{JASA 1958) is routinely used, while in the engineering sciences a
parametric approach is more commonly used. In this report we study the
efficiency of these two techniques when a particular parametric model such
as the exponential, Weibull, normal, log normal, exponential power,
Pareto, Gompertz, gamma, or bathtub shaped hazard distribution is assumed
under a variety of censoring schemes and underlying failure models. We
conclude that in most cases the parametric estimators outperform the
distribution free estimator. The results are particularly striking if the
Weibull forms of these estimators are used routinely.




I. Introduction

A common praoblem faced by the reliability analyst, as well as by the
biomedical researcher, is to estimate the reljability or survivorship
function R(x) = P(X>Xx) for the time, X of occurrence of some event. This
event may be time to failure of some system or time to failure of some
component or subsystem of a larger more complex system in engineering
applications. In biomedical applications, X may denote the time to death,
relapse or cure of a patient, or time to death from a given cause or
disease. Frequently, the observation of the event of interest is
precluded by the occurrence of a censoring event at a random time Y. This
censoring may be due to random observation periods or randon entry into
the study for each individual test unit. Random censoring may also be due
to the failure of a system or individual due to an independent cause not
under study. This censoring may often be quite heavy and the sample size
on which inference is to be based quite small, particularly in the early
exploratory period of product design or testing of a new therapeutic
procedure.

Mathematically, the above problem is formulated as follows. Let X
and Y be independent positive random variables with reliability functions
R(x) = P(X>x) and G(y) = P(y>y). respectively. We do not observe X and Y
directly buf instead we observe T = minimuma (X,Y) and

I = 1 if X < Y a failure

0 if X > Y a censored observation
Based on a random sample of size n we observe (Tj'Ij)' j=1, ..., n.

Qur goal is to estimate R(x).

There are two standard methodological approaches to estimating R(x)

in this framework. The first, which is used most commonly in biological
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and medical applications, is the nonparametric approach of Kaplan and
Meier (1958). This estimator is constructed as follows. Suppose that the
Tj's are ordered so that 'r1 < Tz < ... <Tn and the death times are

unique. The estimator is defined by

(1.1) ﬁk-(x) ={1 if x < T1

i I

0 fn-k )iif'ri_l<x5‘r =1, ..., n.

i’
A special note is ne:;:d 2; ;éver the case where the largest observation
is censored. Here ik.(x) is undefined for t > Tn' Efron (1967)

suggests defining ﬁk.(x) =0 for t > Tn. however we follow Gill

(1980) who suggests estimating R (x) by ﬁkn(x) = ﬁ(fn) in this

case (see Guerts (1987)). Under very general conditions on R(x), G(y) and
an assumption of independence of X and Y, this estimator is consistent
(c.f. Peterson (1977) and Winter (1987)); a generalized maximum likellﬁood
estimator (c.f. Johansen (1978)); and converges weakly to a Gaussian
process (c.E. Aalen (1976)). However recent studies by Geurts (1985) for
nonproportional hazards censoring and Wellner (1985) (cf. Chen, Hollander
and Langberg (1982)) for proportional hazards censoring have shown that

for small sample sizes R - is biased and that this bias is quite

k
large for heavy censoring at median to small values of R(t).

A second approach to estimating R(x) is the fully parametric maximum
likelihood approach which seems to be favored by researchers in the
engineering sciences. Here a plausible model, Ro(x;g). where @ =

{8 ,....Op) is a vector of unknown parameters, is postulated for

1
R(x). This model may, in some cases, be selected by some graphical
technique (c.f. Nelson (1982)) or based on some theoretical grounds.

Estimates of 8 are obtained by finding 8 which maximizes the

likelihood function
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= .g) 1 .
(1.2) L(8) iglho(Ti,g) Ro(Tl'g) where
h(x) = -d{1n R(x)}/ dt is the hazard function of X. The resulting

-~

estimator of R(x) is R Ro (x:8) which, under very

e (%) =
general regularity conditions, is asymptotically unbiased, consistent,
efficient, and normally distributed (c.f. Bain (1978)) if the model R°
is properly selected. However its small sample properties and the
robustness of this estimator to misspecification of the model may be
suspect.

The goal of this paper is to explore the small and moderate sample
size performance of the nonparametric and parametric estimators of R(x)
under light to heavy censoring by means df a Monte Carlo study. For Ro
we study the exponential, Weibull, normal, lognormal, exponential power,
log logistic, Pareto and Gompertz models. Data is simulated from a

variety of distributional shapes including those with constant,

increasing, decreasing, or bathtub or U shaped hazard functions.

I1. Parametric Models for Reliability

In this section we describe the models used for R, {(-]8) in our
Monte Carlo study. The first is the exponential distribution with
R0 (x|9) = exp (-x/8). This model, which has a constant hazard rate
h(x) = 1/8 has been extensively used and studied in this context. For
example, Davis (1952) used this model to study the lifetimes of
manufactured items while Feigel and Zelen (1965)) suggest its use in
modeling survival or remission times for a chronic illness.

The second model we have considered is the two parameter Weibull

8

distribution with reliability function R(x|a,8) = exp (-(t/a)"),a,B>0.

This flexible model has been used in reliability (c.f. Weibull (1951)),

—d
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medical (c.f. Whittemore and Altschuler (1976)). and animal (Pike (1966))
studies. It has great flexibility in that its hazard rate can be monotone
decreasing (8 < 1), constant (8 = 1). or monotone increasing (8 >1).

The next model considered is the normal distribution with mean u and
variance 02. This model. which has an increasing hazard rate, is
included due to its naive use by many not versed in the reliability
literature. We can note. however. that Davis (1952) and Barlow and
P uschan (1965) have suggested it as a model for lifetime data. We also
con. 7-=; the related log normal distribulion with reliability function
Ro(xla.s) = 1-® ((ln x-a)/s)), s > 0, -» < a < ». This distribution has
a humpshaped hazard rate. 1Its use in life studies has been suggested by a
number of researchers including Nelson and Hahn (1972) in an engineering
context and Whittemore and Altschuler (1976) in a medical context.
Estimates of 4 and ¢ or a and s were obtained by the EM algorithm (see
Lawless (1982}).

The next distribution considered was the exponential power
distribution proposed by Smith and Bain (1975). This distribution has
reliability function.

8

(x/a) ), X, «, 8> 0

ﬁ-lexp((x/a)s)/as.

R(xla,B8) = exp (1-e
and hazard rate h(x) = 8 x
It was chosen due to its flexibility since it allows for U shaped hazard
rates when 8 < 1 and monotone increasing hazard rates when 8 > 1.

The sixth distribution studied is the log logistic distribution with
reliability function R{(x{a,8) = 1/(1+ax5), @, 8 > o. This model. with
hazard rate anB_l/(1+axB). behaves like the log normal with a
humpshaped hazard rate for 8 > 1 and has a monotone decreasing hazard rate

for 8 < 1.




T =

The seventh distribution considered is the Pareto, with reliability
function R(x}a,B) = (1+ax)'B. X, a, B > o, and hazard rate
h{x) = Ba/{1+ax) which is strictly decreasing. This model arises in
modeling a heterogeneous exponential population as follows . Suppose that
X has an exponential distributjon with random hazard rate A. If & follows
a gamma distribution with density g(&) = anl_exp (—X/a)/(aﬁr(ﬁ)) then

(unconditionally) X has a Pareto distribution. Maximum likelihood

estimation of a and 8 are on the boundary of the parameter space whenever

n n 2 n 2
(2 1)) £ T -2 (L (T.lj)) < 0,

j=1 3 j=1 JIJ’ j=1 9
in which case the estimated reliability reduces to that of the exponential
(c.f. Lee and Klein (1988)).

The final distribution considered is the Gompertz distribution with
reliability function R (x{a.B) = exp (a(l-eﬁx)iﬁ). a, B. x > o which
has an exponentially increasing hazard rate h(x) = aeBx. This model has
been used extensively in modeling mortality data (see Elandt—&ohnson and
Johnson (1980) and Gehan and Siddiqui (1973)).
3. Simulation Study

To study the performance of the maximum likelihood estimators of R(x)
for the above models and of the Kaplan-Meier Product Limit Estimator 1000
samples of size 25 and 50, with 0%, 10%, 30%, or 50% of each sample being
randomly censored, were generated from the following populations of
failure times: (In each case we fixed the mean life at 1 to make
comparisons easier).
1) exponential ;
2) Weibull with 8 = .5, 2, 4, 8;
3) normal with ¢ = .05, .1, .15;

4) log normal with s = .37, .51, .61;




5) exponential power with 8 = .25, .50, 1, 8;

7) Pareto with 8 = 1, 2, ¢4;

8) Gompertz with 8 = .5, 1, 2;

9) gamma distribution with shape parameter 8 = .5, 2, 4, 8;

10) A bathtub shape hazard distribution proposed by Glaser (1980), which
is a mixture of a gamma with shape parameter 3 with probability p and
an exponential (with the same scale parameter) with probability
q=(1-p), p = .15, .25, .4, and .6; and

11) log logistic with 8 = 2, 3, 4.

Censoring random variables were generated from an exponential distribution

with the appropriate parameter for all death distributions. Additionally,

proportional hazards censoring was used for the Weibull and exponential
power distribution. Exponential censoring will give a censoring pattern
.with heavy early censoring for distributions with an increasing hazard
rate and heavy late censoring for distributions with a decreasing failure

rate. For bathtub shaped hazard rates the censoring will increase to a

maximum and then become light for large observed times.

As a measure of the perfornance of the eight estimators of R{t) we
consider an estimator of the integrated mean squared error defined as
(3.1)

IMSE (R) = E (/7 (R(t) - R(t))? dt)
where R(t) is the true reliability function. We estimate this quantity by
(3.2)

- 1000 t

.95 .
EIMSE (R) = L J N 2
j=1 o (Ry(t) - R(t))" dt/1000

where P(Tgtp) = p and ﬁj(x) is the estimator of survival on the

Jth simulation. The results, reported in Tables 1-8, are the values of
the ratio of integrated mean square error when the product limit estimator
is used to the given maximum likelihood method (i.e.,

EIMSE(KM)/EIMSE(MLE))}, so that a value
6

L




greater than one implies that the corresponding likelihood method performs
better than the Kaplan-Meier estimator. In Figures 1-7 we present plots
of the relative mean squared error (MSE(KM)/MSE(MLE)) at the 5th to 95th
percentiles of the true distribution for a set of representative
distributions based on a sample of size 25 with 30 percent censoring.
These distributions are the exponential, with constant hazard rate.
(Figure 1): the gamma with shape parameter .5 (Figure 2), with a
decreasing hazard rate; the Weibull with 8 = 8 (Figure 3) and the Gompertz

with B 2 (Figure 4). both with increasing hazard rate; the log-logistic

with 8 3 (Figure 5), which has a humpshaped hazard rate; and Glaser's

bathtub shape hazard distrihution with p = .6 (Figure 6) and the
exponential power distribution with 8 = .25 (Figure 7). both with U shape
hazard rates. Exponential censoring was used throughout.
4. Discussion

Miller (i983) noted that, asymptotically, the efficiency of the
Kaplan-Meier estimator is quite low compared to the parametric maximum
likelihood estimator under the assumption the parametric estimation model
is correctly chosen. He showed that this was particularly true for high
censoring propor*tions and reliabilities estimated in either tail. oOf
course when the parametric model is chosen incorrectly the maximum
likelihood estimator is asymptotically inefficient. Our results show that
for small to moderate sample sizes the parametric estimators outperform
the Kaplan-Meier estimator not only when the parametvic model is chosen
correctly but also for families of models with similar shapes. The
parametric models tend to do even better as the percentage of censored
observations increases., reflecting the higher bias of the product limit

estimator.
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Specific recommendations can be made hased on these tables and graphs
P for the use of certain parametric models. First, notice the poor
performance of the Pareto maximum likelihood estimator. Its integrated

[ mean squared error is worse than that of the Kaplan-Meier estimate in 286

L out of 304 cases. This may be due, in part, to the instability of its

P

parameter estimates. The exponential MLE also does poorly except for

Glaser's bathtub shape distribution and the exponential. Its use as a

routine model for reliability is not indicated by these results. For the
remaining wmodels conéldered, the results are mixed. PFor distributions
with a decreasing hazard the Weibull and log logistic MLE's seem to
perform well. The exponential power distribution MLE performs well for
the Weibull and gamma models with 8 < 1. The use of the Gompertz, normal
and log normal MLE's is clearly not indicated. For distributions with a
bathtub shaped hazard rate (Glaser's distribution, exponential power
distribution with 8 < 1) the Weibull and the exponentjial power
distributions outperfora the Kaplan-Meier estimator, while the remaining
distributions do not. For humpshaped hazard rate distributions (log
normal, log logistic) the use of the log logistic or log normal MLE is
indicated. One should note the relatively poor performance of the Weibull
MLE here. The use of the log ldgistic is, perhaps, indicated due to its
simpler computation form.

For distributions with an increasing failure rate the picture is not

80 clear cut. The Weibull MLE outperforss the product limit estimator

except when the true model is normal or Gompertz with an extremely steep

hazard rate (8 = 2). The exponential power distribution does well except
®
for normal data. The Gompertz does well except for normal data and for 7
Weibull data with a relatively flat hazard rate (8 = 2). The log normal
@
- —




and log logistic MLE's provide a reasonable estimator of the reliability
when the data is Weibull or normal. The Gompertz MLE is good for
distributjions with a steep hazard rate such as the Gompertz, exponential
power distribution and Weibull with shepe parameter 8. The estimator
which most consistently outperforms the Kaplan-Meier estimator for
-increasing hazard rate distributions is the Weibull which wins in 131 of
142 cases considered.

The above discussion suggests that a statistician armed with the
Weibull, log logistic and exponential power distribution MLE's can provide
better estimates of the reliability function than one armed only with the
Kaplan-Meier estimator. By a preliminary graphical look at the hazard
rate (c.f. Nelson (1982)) he or she can get a crude idea of shape of the

hazard rate and pick the most appropriate model of these three.
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TABLE 1 -~ EXPONENTIAL MLE

SN BN ERash

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0x 10% 30% 50%x ox 10% 30% 50%
EXPONENTIAL EXP 1.96 1.91 2.11 2.85 1.99 1.92 2.05 2.84
WEIBULL ,B=0.50 EXP 0.26 0.44 1.10 3.17 0.03 0.41 o0.62 2.03
WEIBULL,B=2.00 EXP 0.29 0.34 0.47 0.61 0.16 0.18 0.23 0.32
WEIBULL ,B=4.00 EXP 0.06 0.07 0.10 0.16 0.16 0.03 0.05 0.08
WEIBULL,B=8.00 EXP 0.02 0.03 0.04 0.06 0.01 0.01 0.02 0.03
WEIBULL,B=0.50 WEI 0.35 0.66 1.44 0.21 0.40 0.85
WBIBULL,B=2.00 WEI 0.34 0.45 0.58 0.18 0.25 0.34
WEIBULL.B=4.00 WEI 0.07 0.11 0.19 0.03 0.05 0.10
WEIBULL,B=8.00 WEI 0.03 0.04 0.08 0.01 0.02 0.04
NORMAL,0=0.05 EXP 0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.02
NORMAL,0=0.10 EXP 0.02 0.02 0.03 0.05 0.01 0.01 0.01 0.02
NORMAL,0=0.15 EXP 0.02 0.03 0.04 0.07 0.01 0.01 0.02 0.03
LN NORMAL,S=.37 EXP 0.09 0.10 0.15 0.21 0.04 0.05 0.07 0.10
LN NORMAL,S=.51 EXP 0.20 0.23 0.29 0.38 0.10 0.12 0.15 o0.21
LN NORMAL,S=.81 EXP 0.34 0.38 0.48 0.58 0.18 0.20 0.26 0.32
"EP.B=0.50 EXP 0.93 0.98 1.29 2.54 0.3 0.67 0.89 1.94
EP,B=1.00 EXP 1.08 1.31 1.49 1.87 0.66 0.76 1.04 1.17
EP,B=8.00 EXP 0.02 0.02 0.03 0.06 0.01 0.01 0.02 0.03
EP,B=0.25 EP 0.24 0.50 1.26 0.14 0.28 0.67
EP,.B=0.50 EP 0.97 1.22 1.82 0.69 0.84 1.30
EP,B=1.00 EP 1.21 1.42 1.54 0.78 . 1.00 1.23
EP,B=8.00 EP 0.02 0:03 0.07 0.01 0.02 0.03
EP,B=0.25 EXP 0.19 0.31 1,04 3.32 0.11 0.17 0.62 2.50
PARETO,B=1.00 EXP 0.3¢4 0.70 1.56 3.86 0.22 0.52 1.11 2.76
PARETO,B=2.G0 EXP 0.72 1.02 1.73 3.48 0.59 0.80 1.34 2.7
PARETO,B=4.00 EXP 1.12 1.43 1.87 3.23 0.99 1.20 1.58 2.98
GOMPERTZ ,B=0.50 EXP 1.31 1.40 1.62 1.75 0.82 0.97 1.17 1.39
GOMPERTZ ,B=1.00 EXP 0.61 0.71 0.92 1.14 0.32 0.38 0.53 0.70
GOMPERTZ,B=2.00 BXP 0.22 0.28 0.37 0.56 0.11 0.14 0.20 0.29
GAMMA ,B=0.50 EXP 0.668 0.81 1.22 2.74 0.44 0.52 0.82 1.94
GAMMA ,B=2.00 EXP 2.59 0.87 1.00 1.12 2.46 0.50 0.61 0.89
GAMMA ,B=4.00 EXP 0.53 0.24 0.32 0.43 0.49 0.12 0.17 o0.23
GAMMA ,B=8.00 EXP 1.15 0.71 0.14 0.20 1.15 0.05 0.07 0.10
BATHTUB,P=0.15 EXP 1.83 1.88 1.93 2.95 1.87 1.76 1.89 2.89
BATHTUB, P=0.25 EXP 1.95 1.88 2.00 2.64 1.90 1.90 2.01 2.91
BATHTUB,P=0.40 EXP 2.09 2.07 2.04 2.49 1.97 2.00 1.99 2.47
BATHTUB, P=0.60 EXP 1.64 1.71 1.82 1.96 1.18 1.29 1.47 1.68
LN LOGISTIC,B= 2. EXP 0.62 0.80 1.18 1.56 0.37 0.59 0.86 1.21
LN LOGISTIC.B= 3. EXP 0.27 0.30 0.39 0.46 0.15 0.16 0.21 0.27
LN LOGISTIC,B= 4. EXP 0.12 0.14 0.19 0.25 0.06 0.07 0.09 0.14




TABLE 2 - WEIBULL NMLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
EXPONENTIAL EXP 1.49 1.51 1.867 2.13 1.51 1.52 1.66 2.15
WEIBULL,B=0.50 EXP 1.49 1.55 2.15 4.60 1.51 1.53 2.38 §5.76
WEIBULL,B=2.00 EXP 1.51 1.52 1.56 1.617 1.55 1.53 1.61 1.69
WEIBULL,B=4.00 EXP 1.61 1.61 1.54 1.62 1.65 1.64 1.63 1.60
WEIBULL,B=8.00 EXP 1.67 1.68 1.71 1.67 1.80 1.1 1.70 1.72
WEIBULL,B=0.50 WEI 1.57 1.70 2.64 1.59 1.72 2.50
WEIBULL,B=2.00 WEI 1.53 1.63 1.91 1.62 1.59 1.96
WEIBULL,.B=4.00 WEI 1.60 1.66 1.84 1.62 1.63 1.84
WEIBULL,B=8.00 WEI 1.71 1.65 1.82 1.67 1.73 1.717
NORMAL,0=0.05 EXP 0.82 0.95 1.14 1.31 0.49 0.54 0.66 0.90
NORMAL,0=0.10 EXP 1.12 1.16 1.37 1.56 0.79 0.85 0.99 1.22
NORMAL,0=0.15 EXP 1.30 1.40 1.46 1.56 1.08 1.13 1.25 1.40
LN NORMAL,S=.37 EXP 0.98 1.0} 1.13 1.26 0.71 0.77 0.86 1.04
LN NORMAL,S=.51 EXP 0.97 1.08 1.15 1.30 0.7 0.81 0.95 1.15
LN NORMAL,S=.61 EXP 1.02 1.01 1.16 1.39 0.77 0.83 0.99 1.23
EP.B=0.25 EXP 1.7 1.60 2.19 4.11 1.67 1.50 2.18 5.36
EP.B=0.50 EXP 1.50 1.57 i.69 2.33 1.43 1.43 1.58 2.34
EP,.B=1.00 EXP 1.38 1.47 1.62 1.83 1.29 1.33 1.57 1.67
EP,B=8.00 EXP 1.60 1.50 1.68 1.60 1.34 1.41 1.51 1.52
EP.B=0.25 EP 1.75 1.7 2.12 1.61 1.66 1.80
EP,B=0.50 EP 1.52 1.70 1.93 1.52 1.53 1.80
EP.B=1.00 EP 1.42 1.59 1.73 1.40 1.46 1.74
EP.B=8.00 - EP 1.49 1.62 1.69 1.41 1.52 1.55
PARETO,B=1.00 EXP 1.04 1.21 1.66 3.14 0.88 1.11 1.50 2.95
PARETO,B=2.00 EXP 1.20 1.31 1.3 2.60 1.20 1.21 1.47 2.417
PARETO,B=4.00 EXP 1.34 1.43 1.3 2.42 1.31 1.34 1.51 2.26
GOMPERTZ,B=0.50 EXP 1.42 1.45 1.59 1.82 1.33 1.43 1.53 1.70
GOMPERTZ ,B=1.00 EXP 1,30 1.30 1.44 1.62 1.07 1.12 1.26 1.56
GOMPERTZ ,B=2.00 EXP 1.09 1.14 1.25 1.42 0.91 0.95 1.04 1.25
GAMMA ,B=0.50 EXP 1.54 1.5 1.73 2.85 1.52 1.55 1.9 2.55
GAMMA ,B=2.00 EXP 1.42 1.43 1.56 1.68 1.41 1.39 1.47 1.66
GAMMA , B=4 .00 EXP 1.38 1.41 1.43 1.56 1.26 1.27 1.34 1.43
GAMMA ,B=8.00 EXP 1.28 1.30 1.37 1.42 1.08 1.08 1.28 1.34
BATHTUB,P=0.15 EXP 1.47 1.52 1.62 2.29 1.60 1.51 1.3 2.23
BATHTUB,P=0.25 EXP 1.50 1.51 1.85 2.10 1.51 1.56 1.71 2.30
BATHTUB,P=0.40 EXP 1.50 1.53 1.67 2.02 1.47 1.54 1.66 2.03
BATHTUB,P=0.60 EXP 1.43 1.49 1.59 1.77 1.38 1.41 1.561 1.70
LN LOGISTIC,B= 2. EXP 0.771 0.87 1.18 1.74 0.51 0.67 0.98 1.47
LN LOGISTIC,B= 3. EXP 0.77 0.84 1.03 1.28 0.52 0.60 0.81 1.08
LN LOGISTIC,.B= 4. EXP 0.78 0.84 0.98 1.15 0.48 0.56 0.71 0.97

@




h TABLE 3 - LOG NORMAL MLE
SAMPLE SIZE 25 SAMPLE SIZE S0

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 108 30%  50% 0% 108 30%  50%
EXPONENTIAL EXP 1.30 1.31 1.37 1.49 0.93 0.98 0.93 1.04
WEIBULL, B=0.50 EXP 1.43 1.26 1.28 2.33 1.05 1.21 0.87 1.80

hl WEIBULL,B=2.00 EXP 1.13 1.17 1.30 1.43 0.91 0.2 1.02 1.08
WEIBULL, B=4.00 EXP 1.10 1.16 1.22 1.32 0.86 0.92 0.94 1.12
WEIBULL,B=8.00 EXP © 1.04 1.10 1.17 1.23 0.87 0.88 0.96 1.05
WEIBULL.B=0.50 WEI 1.39 1.15 1.53 0.94 0.83 0.92
WEIBULL,B=2.00 WEI 1.17 1.25 1.44 0.94 0.97 1.05
WEIBULL ,B=4.00 WEI 1.14 1.24 1.42 0.91 1.01 1.04
WEIBULL,B=8.00 WEIL 1.16 1.20 1.39 0.90 1.02 1.06
NORMAL , 0=0.05 EXP 1.79 1.77 1.80 1.80 1.72 1.77 1.70 1.82
NORMAL ,0=0. 10 EXP 1.58 1.65 1.73 1.65 1.52 1.55 1.53 1.80
NORMAL,0=0.15 EXP 1.47 1.47 1.55 1.56 1.36 1.37 1.41 1.53
LN NORMAL,S=.37 EXP 1.56 1.53 1.64 1.64 1.56 1.58 1.58 1.68
LN NORMAL,S=.51 EXP 1.50 1.54 1.55 1.73 1.69 1.32 1.61 1.75
LN NORMAL,S=.61 EXP 1.54 1.51 1.62 1.82 1.56 1.16 1.64 1.83
EP,B=0.25 EXP 1.06 0.78 0.94 1.88 0.62 0.45 0.57 1.55
EP,B=0.50 EXP 1.04 1.01 0.91 1.18 0.67 0.61 0.55 0.76
EP,B=1.00 EXP 0.8 0.99 1.08 1.22 0.57 0.62 0.70 0.69
EP.B=8.00 EXP 0.84 0.8¢ 1.00 1.05 0.59 0.61 0.75 0.81
EP.B=0.25 EP 0.92 0.75 0.90 0.54 0.41 0.47
EP,B=0.50 EP 1.03 0.97 1.05 0.65 0.57 0.61
EP,B=1.00 EP 0.91 1.02 1.07 0.61 0.65 0.71
EP,B=8.00 EP 0.85 0.98 1.11 0.63 0.73 0.76
PARETO.B=1.00 EXP 1.53 1.45 1.62 2.53 1.38  1.3¢ 1.41 1.99
PARETO, B=2.00 EXP 1.44 1.48 1.54 1.97 1.28 1.21 1.16 1.45
PARETO, B=4.00 EXP 1.35 1.43 1.40 1.76 1.18 1.12 1.06 1.23
GOMPERTZ , B=0.50 EXP 0.96 0.99 1.10 1.17 0.862 0.67 0.70 0.74
GOMPERTZ . B=1.00 EXP 0.7 0.78 0.91 1.05 0.45 0.47 0.55 0.62
GOMPERTZ , B=2.00 EXP 0.56 0.63 0.70 0.86 0.33 0.37 0.42 0.50
GAMMA ,B=0.50 EXP 1.11 1.02 0.94 1.38 0.72 0.66 0.55 0.84
GAMMA ,B=2.00 EXP 1.37 1.41 1.56 1.69 1.18 1.20 1.32 1.31
GAMMA , B=4 . 00 EXP 1.43 1.53 1.58 1.67 1.38 1.34 1.49 1.58
GAMMA , B=8 . 00 EXP 1.53 0.78 1.58 1.86 1.45 1.48 1.54 1.84
BATHTUB,P=0. 15 EXP 1.35 1.33 1.33 1.62 1.02 1.04 1.00 1.09
BATHTUB, P=0. 25 EXP 1.2 1.31 1.37 1.5 0.96 1.00 1.01 1.10
BATHTUB. P=0. 40 EXP 1.12 1.21 1.27 1.45 0.79 0.87 0.90 0.95
BATHTUB, P=0.60 EXP 0.97 1.00 1.08 1.13 0.61 0.64 0.67 0.69
LN LOGISTIC,B= 2. EXP 1.3¢  1.38 1.66 2.02 1.22 1.36 1.50 2.02
LN LOGISTIC,B= 3. EXP 1.31 1.36 1.45 1.67 1.28 1.28 1.39 1.58
LN LOGISTIC.B= 4. EXP 1.3 1.33 1.44 1.49 1.26 1.32 1.35 1.53




TABLE 4 - NORMAL MLE

! SAMPLE SIZE 25 SAMPLE SIZE 50
DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
] EXPONENTIAL EXP 0.56 0.61 0.87 1.39 0.34 0.41 0.58 0.99
WEIBULL,B=0.50 EXP 0.16 0.28 0.87 2.54 0.08 0.26 0.50 1.68
WEIBULL,B=2.00 EXP 1.30 1.31 1.37 1.52 1.13 1.13 1.20 1.35
WEIBULL .B=4.00 EXP 1.62 1.63 1.60 1.68 1.65 1.65 1.65 1.85
WEIBULL,B=8.00 EXP 1.38 1.45 1.51 1.53 1.32 1.31 1.36 1.45
WEIBULL ,B=0.50 WEI 0.21 0.38 1.01 0.11 0.21 0.60
WEIBULL,B=2.00 WEI 1.35 1.48 1.88 1.16 1.29 1.69
WEIBULL.B=4.00 WEI 1.63 1.73 2.00 1.61 1.70 1.99
WEIBULL.B=8.00 WEI 1.49 1.52 1.76 1.31 1.46 1.57
NORMAL ,0=0.05 EXP 1.83 1.81 1.83 1.82 1.79 1.79 1.74 1.84
NORMAL,0=0.10 EXP 1.66 1.73 1.80 1.73 1.67 1.71 1.65 1.70
NORMAL ,0=0.15 EXP 1.63 1.64 1.69 1.69 1.63 1.63 1.64 1.72
LN NORMAL,S=.37 EXP 0.92 0.95 1.08 1.23 0.68 0.74 0.82 1.01
LN NORMAL,S=.51 EXP 0.66 0.76 0.90 1.09 0.45 0.51 0.65 0.87
LN NORMAL,S=.61 EXP 0.57 0.60 0.78 1.07 0.35 0.40 0.55 0.79
EP.B=0.25 " EXP 0.14 0.24 1.03 3.17 0.07 0.14 0.64 2.44
EP,B=0.50 EXP 0.46 0.52 0.79 1.60 0.27 0.32 0.51 1.12
EP.B=1.00 EXP 1.19 1.15 1.25 1.43 0.90 0.92 1.02 1.16
EP,B=8.00 EXP 1.13 1.11 1.30 1.31 6.84 0.88 1.02 1.10
EP.B=0.25 EP 0.17 0.33 0.95 0.09 0.18 0.54
EP,.B=0.50 EP - 0.51 0.69 1.16 Q.31 0.44 0.78
EP,.B=1.00 . EP 1.19 1.26 1.63 0.92 1.01 1.32
EP,B=8.00 EP 1.13 1.28 1.43 0.90 1.03 1.12
PARETO.B=1.00 EXP 0.17 0.28 0.68 1.82 0.08 0.16 0.39 1.06
PARETO,B=2.00 EXP 0.26 0.35 0.70 1.58 0.15 0.21 0.40 0.92
PARETO0.B=4.00 EXP 0.34 0.45 0.72 1.51 0.21 0.27 0.45 0.90
GOMPERTZ,B=0.50 EXP 1.08 1.08 1.15 1.50 0.82 0.83 0.92 1.10
GOMPERTZ ,B=1.00 EXP 1.39 1.41 1.43 1.52 1.22 1.26 1.32 1.39
GOMPERTZ,B=2.00 EXP 1.48 1.55 1.1 1.77 1.42 1.45 1.57 1.72
GAMMA , B=0.50 EXP 0.33 0.45 0.79 1.78 0.20 0.25 0.48 1.18
GAMMA ,B=2.00 EXP 0.81 0.86 1.03 1.24 0.58 0.63 0.72 0.97
GAMMA ,B=4.00 EXP 1.04 1.10 1.18 1.38 0.80 0.86 0.97 1.11
GAMMA ,B=8.00 EXP 1.25 1.41 1.35 1.42 1.05 1.06 1.22 1.33
BATHTUB, P=0.15 EXP 0.52 0.61 0.82 1.44 0.33 0.38 0.55 0.92
BATHTUB,P=0.25 EXP 0.80 0.65 0.84 1.2 0.38 0.42 0.57 0.91
BATHTUB, P=0.40 EXP 0.72 0.78 0.93 1.36 0.46 0.55 0.67 0.96
BATHTUB,P=0.60 EXP 0.91 0.99 1.11 1.41 0.65 9.73 0.84 1.09
LN LOGISTIC,B= 2. EXP 0.24 0.31 0.60 1.17 0.11 0.18 0.39 0.78
LN LOGISTIC.B= 3. EXP 0.40 0.47 0.70 1.00 0.23 0.28 0.47 0.74
LN LOGISTIC.B= 4. EXP 0.57 0.65 0.84 1.04 0.34 0.41 0.57 0.84
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TABLE 5 - EXPONENTIAL POWER MLE
b SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
EXPONENTIAL EXP 1.28 1.37 1.54 1.95 1.14 1.31 1.46 1.96
WEIBULL,B=0.50 EXP 1.18 1.41 2.11 4.1 1.07 1.37 2.01 4.88
WEIBULL,B=2.00 EXP 1.34 1.40 1.41 1.55 1.19 1.24 1.32 1.47
WEIBULL,B=4.00 EXP 1.41 1.42 1.42 1.51 1.16 1.18 1.28 1.33
WEIBULL,B=8.00 EXP 1.34 1.36 1.49 1.55 1.07 1.05 1.21 1.35
WEIBULL,B=0.50 WEI 1.34 1.56 2.44 1.31 1.43 2.05
WEIBULL,B=2.00 WEI 1.42 1.53 1.84 1.28 1.41 1.78
WEIBULL,B=4.00 WEI 1.44 1.55 1.80 1.24 1.39 1.69
WEIBULL,B=8.00 WEI 1.44 1.49 1.74 1.15 1.36 1.63
NORMAL ,0=0.05 EXP 0.36 0.35 0.49 0.70 0.17 0.13 0.20 0.32
NORMAL,0=0.10 EXP 0.56 0.50 0.72 1.08 0.28 0.2 0.37 0.56
NORMAL .0=0.15 EXP 0.70 0.71 0.93 1.20 0.42 0.42 0.56 0.77°
LN NORMAL,S=.37 EXP 0.58 0.63 0.77 0.97 0.31 0.37 0.46 0.61
LN NORMAL,S=.51 EXP 0.60 0.72 0.84 1.01 0.3¢ 0.42 0.55 0.76
LN NORMAL,S=.61 EXP 0.5 0.70 0.87 1.13 0.36 0.44 0.59 0.84
EP.B=0.25 EXP 1.53 1.55 2.79 6.73 1.55 1.53 3.11 9.26
EP.B=0.50 EXP 1.51 1.61 1.81 2.78 1.57 1.59 1.77 3.12
EP.B=1.00 EXP 1.57 1.59 1.69 1.80 1.58 1.59 1.73 1.84
EP,.B=8.00 ' EXP 1.89 1.77 1.96 1.77 1.89 1.85 1.88 1.83
EP.B=0.25 EP 1.55 1.67 2.74 1.51 1.7 2.40
EP.B=0.50 EP _ 1.54 1.79 2.14 1.65 1.68 2.18
EP,.B=1.00 EP 1.57 1.65 1.90 1.67 1.64 1.99
EP,.B=8.00 -P 1.73 1.77 1.82 1.81 1.75 1.76
PARETO,B=1.00 EXP 0.64 0.92 1.41 2.82 0.41 0.70 1.12 2.18
PARETO.B=2.00 EXP 0.84 1.02 1.39 2.37 0.63 0.81 1.12 1.91
PARETO,B=4.00 EXP 1.00 1.18 1.42 2.27 0.77 0.97 1.22 1.82
GOMPERTZ ,B=0.50 EXP 1.55 1.55 1.62 1.82 1.58 1.65 1.65 1.75
GOMPERTZ .B=1.00 EXP 1.50 1.49 1.56 1.71 1.43 1.46 1.51 1.78
GOMPERTZ,B=2.00 EXP - 1.32 1.35 1.42 1.54 1.24 1.26 1.31 1.50
GAMMA ,B=0.50 EXP 1.43 1.51 1.82 3.28 1.45 1.57 1.84 3.16
GAMMA ,B=2.00 EXP 1.12 1.21 1.35 1.50 0.85 1.02 1.11 1.32
GAMMA ,B=4 .00 EXP 0.96 1.04 1.13 1.33 0.3 0.74 0.88 1.05
GAMMA ,B=8.00 EXP 0.81 1.49 1.00 1.11 0.49 0.51 0.87 0.86
BATHTUB,P=0.15 EXP 1.27 1.40 1.48 2.08 1.21 1.29 1.41 1.90
BATHTUB,P=0.25 EXpP 1.39 1.44 1.52 1.94 1.33 1.44 1.50 1.94
BATHTUB.P=0.40 EXP 1.49 1.54 1.61 1.89 1.42 1.60 1.59 1.92
BATHTUB,P=0.60 EXP 1.46 1.56 1.60 1.85 1.44 1.54 1.57 1.82
LN LOGISTIC,B= 2. EXP 0.46 0.59 0.89 1.46 0.23 0.34 0.64 1.08
LN LOGISTIC,B= 3. EXP 0.46 0.54 0.75 0.99 0.23 0.29 0.46 0.69
LN LOGISTIC,B= 4. EXP 0.44 0.52 0.67 0.87 0.21 0.26 0.37 0.58




TABLE 6 - LOG LOGISTIC MLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
BATHTUB,P=0.80 EXP 1.14 1.16 1.23 1.34 0.87 0.87 0.87 0.95
EXPONENTIAL EXP 1.32 1.37 1.49 1.85 1.12 1.16 1.16 1.42
WEIBULL,B=0.50 EXP 1.17 1.28 1.54 3.14 1.05 1.21 1.15 2.76
WEIBULL,B=2.00 EXP 1.29 1.32 1.43 1.55 1.14 1.17 1.24 1.37
WEIBULL,B=4.00 - EXP 1.30 1.34 1.37 1.46 1.14 1.18 1.25 1.34
WEIBULL,B=8.00 EXP 1.34 1.40 1.45 1.51 1.16 1.20 1.25 1.37
WEIBULL,B=0.50 WEI 1.32 1.27 1.99 0.99 1.02 1.35
WEIBULL,B=2.00 WEI 1.31 1.41 1.69 1.16 1.21 1.43
WEIBULL,B=4.00 WEI 1.36 1.45 1.59 1.18 1.26 1.43
WEIBULL,B=8.00 WEI 1.42 1.47 1.62 1.17 1.33 1.39
NORMAL , 0=0.05 EXP 1.97 1.94 1.96 1.47 1.97 1.92 1.88 2.01
NORMAL,0=0.10 EXP 1.72 1.7 1.84 1.39 1.85 1.72 1.69 1.72
NORMAL,0=0.15 EXP 1.60 1.62 1.64 1.58 1.49 1.51 1.56 1.66
LN NORMAL,S=.37 EXP 1.47 1.49 1.53 1.54 1.43 1.46 1.49 1.64
LN NORMAL,S=.51 EXP 1.44 1.46 1.50 1.70 1.44 1.45 1.49 1.67
LN NORMAL,S=.61 EXP 1.44 1.47 1.58 1.79 1.44 1.50 1.58 1.79
EP,B=0.25 EXP 1.00 0.83 1.14 2.41 0.65 0.51 0.7 2.24
EP,B=0.50 EXP 1.16 1.11 1.08 1.50 0.83 0.75 0.72 1.10
EP,B=1.00 EXP 1.10 1.15 1.24 1.45 0.87 0.87 0.94 0.94
EP.B=8.00 EXP 1.21 1.17 1.33 1.20 0.85 0.92 1.06 1.16
EP,B=0.25 EP 0.94 0.90 1.15 0.59 0.50 0.67
EP,B=0.50 EP 1.12 1.10 1.31 0.81 0.72 0.87
EP,B=1.00 EP 1.11 1.21 1.31 0.86 0.86 0.99
EP,B=8.00 EP 1.18 1.31 1.03 0.93 1.04 0.97
PARETO,B=1.00 EXP 1.56 1.50 1.82 3.12 1.50 1.49 1.70 2.83
PARETO,B=2.00 EXP 1.47 1.50 1.71 2.48 1.37 1.35 1.41 2.05
PARETO,B=4.00 EXP 1.42 1.48 1.58 2.15 1.29 1.27 1.29 1.72
GOMPERTZ ,B=0.50 EXP 1.14 1.18 1.23 1.41 0.90 0.93 0.93 1.02
GOMPERTZ ,B=1.00 EXP 1.04 1.04 1.14 1.24 0.76 0.76 0.81 0.88
GOMPERTZ ,B=2.00 EXP 0.91 0.95 1.01 1.09 0.67 0.6 0.72 0.77
GAMMA ,B=0.50 EXP 1.21 1.11 1.12 1.82 0.87 0.78 0.73 1.19
GAMMA ,B=2.00 EXP 1.44 1.41 1.57 1.78 1.30 1.29 1.44 1.60
GAMMA ,B=4.00 EXP 1.44 1.49 1.517 1.65 1.39 1.36 1.51 1.62
GAMMA ,B=8.00 EXP 1.46 1.04 1.55 1.58 1.43 1.46 1.51 1.62
BATHTUB,P=0.15 EXP "1.37 1.39 1.47 2.00 1.18 1.20 1.22 1.54
BATHTUB,P=0.25 EXP 1.32 1.39 1.61 1.89 1.12 1.17 1.22 1.54
BATHTUB,P=0. 40 EXP 1.21 1.29 1.39 1.7 0.99 1.04 1.08 1.27
LN LOGISTIC.B= 2. EXP 1.46 1.52 1.81 2.22 1.48 1.57 1.65 2.36
LN LOGISTIC,B= 3. EXP 1.47- 1.52 1.56 1.81 1.48 1.48 1.56 1.75
LN LOGISTIC,B= 4 EXP 1.50 1.50 1.55 1.59 1.50 1.51 1.55 1.65




TABLE 7 - PARETO MLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0x 10% 30% 50% 0% 10% 30% 50%
EXPONENTIAL EXP 0.38 0.39 0.48 0.82 0.20 0.22 o0.27 0.53
. WEIBULL,B=0.50 EXP 1.23 1.21 1.07 1.81 1.00 1.23 0.91 1.82
L' WEIBULL,B=2.00 EXP 0.17 0.18 0.23 0.34 0.09 0.10 0.11 0.17
WEIBULL,B=4.00 EXP 0.02 0.03 0.03 0.05 0.01 0.01 0.02 0.02
WEIBULL,B=8.00 EXP 0.01 .01 0.01 0.01 0.00 0.00 0.01 0.01
WEIBULL,B=0.50 WEI 1.32 1.09 1.17 1.09 0.93 0.86
WEIBULL,B=2.00 WEI 0.18 0.23 0.39 0.10 0.12 0.21
WEIBULL,B=4.00 WEI 0.03 0.03 0.05 0.01 0.02 0.03
WEIBULL,B=8.00 WEI 0.01 0.01 0.01 0.00 0.00 0.01
NORMAL, 0=0.05 EXP 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
NORMAL, 0=0.10 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
NORMAL,0=0.15 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01
LN NORMAL,S=.37 EXP 0.03 0.03 0.04 0.06 0.02 0.02 0.02 0.03
LN NORMAL,S=.51 EXP 0.07 0.08 0.10 0.13 0.04 0.04 0.05 0.07
LN NORMAL,S=.61 EXP 0.14 0.15 0.18 0.25 0.08 0.08 0.16 0.13
EP,B=0.25 EXP 1.01 0.74 0.86 3.35 0.62 0.43 0.59 3.96
EP,B=-0.50 EXP 0.41 0.52 0.66 1.22 0.46 0.57 0.72 1.28
EP.B=1.00 EXP 0.36 0.39 0.52 0.79 0.22 0.24 0.31 0.49
EP,B=8.00 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
EP,B=0.25 EP 0.87 0.71 0.80 0.52 0.40 0.51
EP,B=0.50 EP 0.47 0.63 0.88 0.6 0.72 0.93
EP,B=1.00 EP 0.39 0.51 0.86 0.24 0.32 0.55
EP,B=8.00 EP 0.01 0.01 0.01 : 0.00 0.00 0.00
PARETGQ,B=1.00 EXP 0.30 0.31 0.29 0.54 0.77 0.47 0.30 0.40
PARETO,B=2.00 EXP 0.32 0.31 0.36 0.55 0.44 0.39 0.26 0.43
PARETO,B=4.00 EXP 0.33 ©€.33 0.38 0.70 0.29 0.29 0.29 0.41
GOMPERTZ,B=0.50 EXP 0.39 0.41 0.55 0.87 0.23 0.26 0.31 0.54
GOMPERTZ ,B=1.00 EXP 0.22 0.25 0.32 0.49 0.13 0.14 0.18 0.27
GOMPERTZ,B=2.00 EXP 0.07 0.08 0.09 0.14 0.04 0.04 0.05 0.07
GAMMA ,B=0.50 EXP 0.51 0.63 0.69 1.22 0.86 0.75 0.88 1.38
GAMMA ,B=2.00 EXP 0.28 0.31 0.38 0.53 0.15 0.17 0.21 0.31
GAMMA ,B=4.00 EXP 0.07 0.08 0.09 0.13 0.04 0.04 0.05 0.07
GAMMA ,B=8.00 EXP 0.03 0.25 0.04 0.05 0.01 0.01 0.02 0.02
BATHTUB,P=0.15 EXP 0.37 0.38 0.50 0.84 0.25 0.23 0.31 0.52
BATHTUB,P=0.25 "EXP 0.36 0.37 0.50 0.80 0.19 0.23 0.32 0.53
BATHTUB,P=0.40 EXP 0.33 0.40 0.54 0.87 0.18 o0.22 0.31 0.56
BATHTUB, P=0.60 EXP 0.36 0.40 0.56 0.86 0.21 0.22 0.30 0.53
LN LOGISTIC,B= 2. EXP 0.26 0.25 0.29 0.49 0.16 0.15 0.16 0.25
LN LOGISTIC,B= 3. EXP 0.12 0.13 0.16 0.21 0.07 0.07 0.08 0.12
LN LOGISTIC,B= 4. EXP 0.05 0.05 0.06 0.08 0.03 0.03 0.03 0.04




TABLE 8 - GOMPERTZ MLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 42,9 10% 30% 50%
EXPONENTIAL EXP 1.41 1.44 1.57 2.18 1.57 1.52 1.63 2.24
WEIBULL,B=0.50 EXP 0.26 0.44 1.09 3.15 0.15 0.41 0.62 2.03
WEIBULL,B=2.00 EXP 1.20 1.22 1.27 1.37 0.95 0.99 1.08 1.22
WEIBULL,B=4.00 EXP 1.20 1.24 1.29 1.40 0.93 0.97 1.10 1.17 —_
WEIBULL,B=8.00 EXP 1.50 1.52 1.61 1.63 1.35 1.40 1.47 1.54
WEIBULL,B=0.50 WEI 0.35 0.66 1.43 0.21 0.40 0.85
WEIBULL,B=2.00 WEIL 1.23 1.34 1.61 0.99 1.14 1.50
WEIBULL,B=4.00 WEI 1.27 1.39 1.69 1.01 1.17 1.51
WEIBULL,B=8.00 WEI 1.54 1.56 1.79 1.36 1.51 1.69
NORMAL ,0=0.05 EXP 0.65 0.77 0.97 1.16 0.36 0.41 0.51 0.72
NORMAL,0=0.10 EXP 0.78 0.82 1.05 1.35 0.46 0.51 0.66 0.89
NORMAL,0=0.15 EXP 0.82 0.93 1.07 1.31 0.54 0.59 0.74 0.94
LN NORMAL,S=.37 EXP 0.47 0.52 0.66 0.86 0.24 0.29 0.38 0.53
LN NORMAL,S=.51 EXP 0.54 0.64 0.75 0.92 0.29 0.35 0.46 0.65
LN NORMAL,S=.61 EXP 0.66 0.70 0.83 1.04 0.37 0.42 0.55 0.76
EP,B=0.25 EXP 0.19 0.31 1.04 3.32 0.11 0.17 0.62 2.50
EP,B=0.50 EXP 0.87 0.94 1.23 2.43 0.62 0.66 0.88 1.92
EEP,B=1.00 EXP 1.48 1.45 1.53 1.71 1.49 1.47 1.58 1.67
EP,B=8.00 EXP 1.85 1.73 1.89 1.77 1.72 1.79 1.81 1.78
EP,B=0.25 EP 0.24 0.50 1.26 0.14 0.28 0.67
EP,B=0.50 EP 0.91 1.17 1.73 0.68 0.84 1.29
EP,B=1.00 EP 1.47 1.583 1.77 1.53 1.52 1.79
EP,.B=8.00 EP 1.68 1.77 1.83 1.75 1.75 1.77
PARETO,B=1.00 EXP 0.33 0.68 1.42 3.186 0.22 0.51 1.07 2.45
PARETO,B=2.00 EXP 0.69 0.94 1.48 2.64 0.58 0.79 1.23 2.31
PARETO,B=4.00 EXP 1.00 1.22 1.55 2.46 0.94 1.12 1.41 2.24
GOMPERTZ,B=0.50 EXP 1.43 1.44 1.50 1.179 1.49 1.49 1.54 1.64
GOMPERTZ,B=1.00 EXpP 1.47 1.48 1.51 1.57 1.46 1.50 1.55 1.62
GOMPERTZ,B=2.00 EXP 1.50 1.48 1.54 1.62 1.53 1.53 1.58 1.64
GAMMA ,B=0.50 EXP 0.5 0.79 1.19 2.64 0.44 0.52 0.81 1.92
GAMMA ,B=2.00 EXP 1.19 1.20 1.29 1.39 0.94 0.99 1.06 1.22
GAMMA ,B=4.00 EXP 0.81 0.87 0.98 1.16 0.48 0.56 0.70 0.87
GAMMA ,B=8.00 EXP 0.64 1.48 0.85 0.99 0.36 0.40 0.54 0.72
BATHTUB,P=0.15 EXP 1.36 1.43 1.52 2.27 1.52 1.45 1.56 2.18
BATHTUB, P=0.25 EXP 1.41 1.44 1.54 2.03 1.44 1.49 1.61 2.19
BATHTUB, P=0.40 EXP 1.45 1.46 1.56 1.98 1.49 1.52 1.58 2.02
BATHTUB,P=0.60 EXP 1.45 1.48 1.54 1.79 1.50 1.49 1.52 1.74
LN LOGISTIC,B= 2. EXP 0.61 0.78 1.08 1.49 0.38 0.61 0 85 1.19
LN LOGISTIC,B= 3. EXP 0.51 0.56 0.73 0 93 0.26 0.31 0.44 0.63
LN LOGISTIC,B= 4. EXP 0.39 0.46 0.59 0.80 0.18 0.22 0.32 0.51




§ FIGURE 1 - MSE OF MAXIMUM LIKELIHOOD ESTIMATORS OF
SURVIVAL FOR THE EXPONENTIAL DISTRIBUTION
WITH 30% CENSORING
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MSE OF MAXIMUM LIKELIHOOD ESTIMATORS OF

FIGURE 2 -

SURVIVAL FOR THE GAMMA DISTRIBUTION
WITH B=0.5, 30% CENSORING
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FIGURE 4 - MSE OF MAXIMUM LIKELIHOOD ESTIMATORS OF
SURVIVAL FOR THE GOMPERTZ DISTRIBUTION
WITH B=2, 30% CENSORING
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FIGURE 5 - MSE OF MAXIMUM LIKELIHOOD ESTIMATORS OF
SURVIVAL FOR THE LOG-LOGISTIC DISTRIBUTION
WITH B=3, 30% CENSORING
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